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Abstract

The indirect boundary element method (IBEM) is used to simulate wave propagation in two-dimensional irregularly layered elastic media
for internal line sources. The method is based on the integral representation for scattered elastic waves using single layer boundary sources.
Fulfillment of the boundary conditions leads to a system of integral equations. Results are obtained in the frequency domain and seismograins
are computed through Fourier synthesis. In order to test and validate the method we present various comparisons between our results and the
time series obtained analytically for a buried line source in a half-space and by using the recently developed spectral element method (SEM).
q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The simulation of elastic wave propagation in the earth is
of interest in many instances. For example, it can be crucial
to correctly interpret field data aimed to identify deep buried
structures, to locate underground resources and to interpret
and forecast seismic ground motion amplifications due to
local geology. The spatial variation of ground shaking has
become evident after recent, well-documented earthquakes.
Such is the case of the damage belt in Kobe during the
Hyogo-ken Nambu event of January 1995 which was very
likely produced by basin-induced surface waves (Kawase
[1]).

Analytical solutions of elastic wave propagation
problems are rare. The vectorialP-SVproblem is generally
solvable by numerical techniques only, while for few simple
two-dimensional configurations the bulk of solutions of the
scalarSHwave equation is applicable. These cases are quite
unrealistic, yet they provide understanding of the physics of
surface motion. To simulate wave propagation in more
realistic circumstances, use must be made of numerical
methods like finite differences, finite elements or spectral
elements. The reader may find an account of these techni-
ques in Sa´nchez-Sesma [2]. Here, let us just quote three
among the latest publications: Ohminato and Chouet [5],

Moczo et al. [4] and Faccioli et al. [3], (for finite difference,
finite difference combined with finite element and spectral
element method, respectively). As far as laterally homoge-
neous layered media are concerned, the pioneering works of
Haskell [6], Bouchon and Aki [7], Bouchon [8], Luco and
Apsel [9] and Kennett [10] are essential references. Good
specialized reviews are those of Chapman and Orcutt [11]
and Muller [12]. Since then, a lot of work has been done
modifying the existing methods to reduce computational
time, speed up numerical convergence and gain numerical
stability, mainly with the aim of efficiently solving inversion
problems. However, realistic earth models imply irregula-
rities of geometry, as well as of mechanical properties. For
laterally irregular layered media a great variety of techni-
ques has been used. In order to give, some perspective it is
worth mentioning the following contributions. Aki and
Larner [13] and Bouchon et al. [14] used the discrete-wave-
number method and Boore [15] employed finite differences.
Nolet et al. [16] used an approximated modal approach.
Chen [17] proposed an extension of Kennett’s method so
that his formulation becomes particularly attractive as the
number of layers increases. Pedersen et al. [18], Sa´nchez-
Sesma et al. [20], Bouchon et al. [19] and Yokoi [21] calcu-
lated the seismic response using boundary integral equa-
tions. Druzhinin et al. [22] developed an approximate
hybrid formulation with extremely reduced computational
costs.
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The goal of this paper is to explore the use of the Indirect
Boundary Element Method (IBEM) when a buried line
source excites a layered medium. The scattered fields are
given in terms of boundary integrals. Introduction of bound-
ary conditions and discretization of the integration paths
lead to a system of linear equations. To properly account
for the details of the wavefield, the discretization must be
finer at larger frequencies, so that the size of the problem is
approximately an increasing linear function of frequency.
However, good results can be obtained with a relatively
small computational effort. In what follows, the basic inte-
gral representation is given in detail and several examples
are provided. Two of them are intended to test the method as
the time series are compared with independent solutions;
namely, the exact one obtained by Garvin [23] (for a buried
line dilatational source in a half-space) and numerical
results computed by Komatitsch and Vilotte [24] (an irre-
gular layer over a half-space is solved using the spectral
element method they have recently developed). Some new
simulations for a sharp topographical profile and for an
irregular layer are presented as well.

2. Integral representation

Consider the two-dimensional Euclidean space occupied
by an elastic material and a continuous curveS, finite or
infinite, in such a domain. Applying a harmonic force
densityf j(j) (where j � 1 or 3 and Cartesian coordinates
are used) as excitation onS, the radiated elastic displace-
ment can be written in terms of the integral.

ui�x� �
Z

S
fj�j�Gij �x; j�dSj �1�

whereui(x) is the ith component of the radiated displace-
ment at pointx; Gij (x,j) is the Green’s function of the whole
space, i.e. the displacement in the directioni at pointx due
to the application of a unit harmonic force in the directionj
at pointj;f j(j) is the force density in the directionj; here
and hereafter the usual sum convention for repeated indices
is used. Therefore,f j(j)dSj is clearly a force distribution at
the surfaceS. Suffixes in the differential operator denote the
spatial variable over which the integral is performed. This
integral representation can be obtained from Somigliana’s
identity (Sánchez-Sesma and Campillo [25]). Kupradze [26]
proved that the displacement field is continuous acrossS if
f j(j) is continuousalong S.

By application of Hooke’s law and Cauchy’s equation we
have

ti�x� � cfi�x�1
Z

S
fj�j�Tij �x; j�dSj �2�

whereti(x) is the ith component of traction associated to a
directionn(x); c� 0.5 if x tends to the smooth boundaryS
from inside, that is to say to the surface with outward direc-
ted unit normaln(x) (c� 2 0.5 if the normal has opposite
direction),c� 0 if x is not atS; Tij (x,j) � traction Green’s
function, i.e. the traction in the directioni at a pointx with
associated directionn(x) and due to the application of a unit
force in the directionj at j on S.

Green’s functions for displacement and traction of two-
dimensional problem are expressed by means of cylindrical
Hankel’s functions. Recalling Sa´nchez-Sesma and Campillo
[25], we write
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l andm are the Lame´’s constants;r is the mass density;a
and b are P and S wave velocity, respectively;r �������������������������������x1 2 j1�2 1 �x3 2 j3�2
p

; gj � �xj 2 jj�=r; dij is the
Kronecker’s delta andH�2�m �·� is the Hankel’s function of
the second kind and orderm.

Green’s functions have a deep physical meaning as they
give essential, complete information from which we can
compute any dynamic field if appropriate boundary condi-
tions are imposed. When frequency tends to zero the
dynamic field, expressed by means of Green’s functions,
tends to its static counterpart (see e.g. Love [27]).

3. Formulation of the problem

Consider now an elastic half-spaceE with an elastic layer
R (Fig. 1). The free surface of the layer is denoted by21R,
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Fig. 1. Irregularly layered medium. An irregular homogeneous layerRrests
on a homogeneous half-spaceE.



the interface between the two media is named2E � 22R.
Because of linearity, the total ground motion can be
expressed by the superposition of a knownreferencesolu-
tion with unknown diffracted-scattered wavefields

ui � u�0�i 1 u�d�i �3�
whereu�0�i is the reference solution (i.e. the solution for the
source in the absence of irregularities) andu�d�i is the
diffracted-scattered displacement fields.

When a line source excites the model,u�0�i is zero every-
where except in the medium where the source is located. In
this medium the reference solution is the radiated field
generated by the source. Diffracted-scattered fields, which
satisfy Sommerfeld’s radiation condition, can be computed
using the integral form of Eq. (1), if the force densities are
known.

Superposition of effects can also be used to represent
tractions

ti � t�0�i 1 t�d�i �4�
wheret�0�i corresponds to the reference solution, whereast�d�i
to the diffracted-scattered fields.

Tractions and displacements have to be continuous at the
interface between media and tractions must be null at the
free surface. These three conditions, respectively, allow us
to write a system of integral equations for the unknown
force densities:
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where the superscript denotes the medium for which the
associated quantity is defined and2R� 21R 1 22R.

In general, for multilayered media, the system to be
solved is composed of 2N 1 1 equations, whereN is the
number of layers. Continuity of displacements and
tractions at each interface has to be enforced; the new
equations would have the structure of Eqs. (5) and
(6).

From a mathematical point of view, the system of Eqs.
(5)–(7) allows us to find out the force density distribu-
tions which, substituted back into Eq. (1), give the
diffracted displacement field. Numerically, these integral
equations still present some difficulties because of their
continuous integrand functions, because of the singularity
of the Green functions and because of the infinite inte-
gration paths. To solve these problems the following
procedure can be adopted. Each curved surface is discre-
tized into linear segments which size depends on the
shortest wavelength taken between those of the two join-
ing media. Along the segments, the force density varia-
tion is prescribed and Gaussian integration (or analytical
integration, where the Green function is singular) is
performed. More details about the discretization proce-
dure can be found in Sa´nchez-Sesma et al. [28] and in
Sánchez-Sesma and Campillo [25]. The results we
present are obtained choosing the segment size minor
than one sixth of the wavelength,f is assumed constant
on each segment and three Gaussian points are used.
With such parameters, accurate solutions can be
obtained. As far as the infinite integration paths are
concerned we have no choice: surfaces have to be finite.
The IBEM can be seen as the numerical realization of
the Huygen’s principle. Thus, to reconstruct, say, a given
wave front, all the points of the infinite discontinuity
surface act as sources and radiate energy. If surfaces
are truncated, the solution lacks the lateral contributions
and the edges play as diffractor points which generate
spurious waves. The artificial perturbations are character-
ized by small amplitudes and their reflections inside the
model are negligible. Errors are mainly associated to back-
scattering waves generated at the boundary edges. Differ-
ent constructs can be adopted to eliminate, or much reduce,
this noise. The simplest solution is to choose a surface
length large enough so that the fictitious waves fall outside
the observational space-time window. Alternatively, one
can play with the quality factor increasing damping near
the edges [29], or approximate the integral on the infinite
surface using an analytical asymptotic device [30]. The
results we present are obtained without using any artifice.
Since the computational effort increase with surfaces
length, we just look for a trade-off between economy and
precision.

By means of the described procedure the infinite number
of radiating sources is reduced to a finite number of
unknowns and the set of integral equations becomes a linear
system of equations.
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Fig. 2. Transparent layer model used to compare the Garvin’s solution [23]
and our results. RegionsR andE have the same properties. The interface
between the two media has the trapezoidal shape defined in the text. The
source is located just under the free surface so that Rayleigh waves clearly
emerge.



4. Testing of the method

For a dilatational line source of impulsive type buried in a
homogeneous half-space, Garvin [23] expressed surface
time displacements by exact closed algebraic formulas. To
validate our method we use this analytical solution,
convolved with a source time function. Therefore, with
the IBEM code, we calculate synthetic seismograms and
compare them with Garvin’s time traces. In the example

we present here, we solve an irregular layer with thesame
properties of the half-space, so that consistency of our
scheme is also tested, and a flat free surface (Fig. 2). The
irregularity has a trapezoidal shape: its major base measures
2 km and the minor one 1 km; the depth of the layer varies
from 0.5 to 1 km; the discretized surface covers 3 km on
each side of the symmetry axis. Wave velocities are of 1 and
2 km s21 for SandP waves, respectively. No attenuation is
considered. The source is located on the symmetry axis at a
depth of 0.2 km. We use an array of 11 equally spaced
receivers with an offset of 0.4 km. The excitation is
provided by a Ricker pulse, which is analytically expressed
by r(t) � (a2 2 1/2) exp (2 a2) anda � p(t 2 ts)/tp; we
choosetp � 1 s as characteristic period andts � 2 s. The
comparison between Garvin’s and IBEM solutions shows a
very good agreement (Fig. 3). We can identify spurious
Rayleigh waves arrivals, which represent an edge effect
due to the finite length of the discretized surface. Free
surface edges are the only source of appreciable artificial
diffraction. Both low and high frequencies are equally
affected by noise. Varying the total length of the discretized
surfaces, transfer functions maintain the same pattern but
amplification levels reveal little differences. The solution
converges increasing the relation between discretized and
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Fig. 3. Comparison between our results (continuous line) and Garvin’s
solution (dashed line). The computations were performed for the model
of Fig. 2. The agreement between the traces is very good.

Fig. 4. A triangular hill is used to asses the effects of an irregular topo-
graphy. Computations are made for each one of the three depicted sources
independently.

Fig. 5. Horizontal and vertical displacements computed at the free surface
for the model of Fig. 4 excited by the deep source 1. The symmetry of
geometry is reflected in the symmetry of the vertical traces and in the
antisymmetry of the horizontal traces.



observation region. At the free surface, the peak amplitude
of these fictitious displacements is of about one tenth of the
maximum value of direct Rayleigh waves. For buried
receivers the difference is still greater.

5. Examples

To assess topographic effects we study an homogeneous
half-space with irregular surface. In this model we are not
introducing any transparent layer; thus, the free surface is
the only boundary condition we consider. In fact, the formu-
lation we presented is an extension of that used to solve
irregular topography problems. Since no interface is
defined, only Eq. (7), the free surface condition, is required;
all the superscripts are turned toE and the integration path is
2E. We analyze a triangular mountain 2 km high and 2 km
wide at the base, the limits of the discretized boundary are
placed at 6 km at each side from the symmetry axis (Fig. 4).
Three different sources are considered: the first one on the
symmetry axis, the other two at 1 and 2 km away from it, all
of them are located at a depth of 0.2 km under the flat
surface level.S wave velocity is 2 km s21 and v is 1/4.
Quality factor for bothP and S waves is 10 000, i.e. no

attenuation is considered. Forty-one equally spaced recei-
vers are placed symmetrically, covering a distance of 8 km,
the first station is at 2 km from the surface edge. To compute
synthetics, we use a Ricker pulse characterized bytp �
0.75 s andts� 1 s, results are shown in Figs. 5–7. Although
source depth is the same for the three examples we analyze,
vertical displacement amplitude is very different. Indeed,
for major vertical distance between free surface and source
minor amplifications are estimated (example 1 against 2 and
3), for major energy concentration larger amplifications are
obtained (in the second case energy partially radiate inside
the mountain, whereas in the third example direct upgoing
waves are reflected from the flat free surface). As far as
horizontal displacement is concerned, we can observe A
clear symmetry when the source is located on the geome-
trical symmetry axis (first case) or below a locally
symmetric surface (third case). In this last example symme-
try is broken as soon as back propagating waves, diffracted
by the mountain, arrive at the stations. No matter which case
we consider, the synthetic pattern is remarkably different for
mountain and flat surface receivers. On the flat surface we
can identify the directP wave arrival, the Rayleigh waves
contribution to this arrival is neatly separated far away from
the source. Then we can appreciate two main Rayleigh
waves groups, both associated with an elliptical retrograde
particle displacement.

In order to study wave propagation in a laterally irregular
layered medium we compare the results obtained with the
IBEM and with the SEM. The spectral element method will
be presented elsewhere (see Komatitsch et al. [31]). Some
results obtained for the models of Figs. 8 and 10 are shown
in Figs. 9 and 11; in both cases agreement is excellent. We
assumeSwave velocity (b) equal to 0.5 km s21 in the layer
and to 1.5 km s21 in the half space; in both casesa, the P
wave velocity, is twiceb. No damping is introduced. We
examined sources located inside the layer as in the half-
space, but the simulations presented here correspond just
to the sources S1[2 1 km, 3 km] and S2[2 1 km,
1.5 km]. Fifty-one equally spaced stations cover 2 km on
the free surface in both directions from the symmetry
axis. Ricker pulse central frequency is 0.75 Hz (tp �
1.3333 s) andts� 1.4 s. We first analyze the effect produced
by an irregular interface described by the functionz� 1 1
0.5[sin(p(x 1 1)/2)]2, for 2 1 km , x , 1 km; the discre-
tized free surface is truncated atx� ^ 6 km (Fig. 8). The
number of unknowns we use varies from 77 to 890 (for the
minimum and maximum frequency, respectively), while the
spectral method requires a grid made of 22176 points. The
solution we present is obtained computing just 128 frequen-
cies, while the spectral method is run through 4000 time
steps. More details on the model used in the SEM simulation
can be found in Komatitsch et al. [31]. The two methods
give the displacement field in the whole domain, but the
number of unknowns they manage differs in orders of
magnitude. In Fig. 9 we present the results obtained for
source 1. We can observe significant amplification effects
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Fig. 6. Horizontal and vertical displacements computed at the free surface
for the model of Fig. 4 excited by source 2. The source is just under the base
edge of the hill. Part of the energy radiates inside the relief and part imme-
diately reaches the free surface.



at the center of the valley. This phenomenon is remarkable
both in vertical and horizontal motion. First arrival at the
center of the valley has a vertical amplitude of two times the
one computed for edge receivers; horizontal displacement at
different receivers shows smaller variation. If the layer were
flat, the same source would not produce significant surface
waves, we would see fiveP arrivals (the direct wave and its
P reflections as it bounces up and down the layer), no signif-
icant SV conversion would be appreciable and superficial
Rayleigh waves would appear only after 10 s. Vertical

motion would prevail on the horizontal and the shadowed
zone on the right edge of the basin wouldn’t appear. The
smooth irregularity of the interface is responsible for impor-
tant rising of sufficial waves.

The second model we use to compare SEM and IBEM
results is obtained from the former introducing an irregular
free surfacez� 2 0.5[sin(p(x 1 1)/2)]2 for 2 1 km, x ,
1 km, Fig. 10. In this case, to reduce computational costs,
surfaces were truncated atx � ^ 4 km. For the character-
istics of the model used in the SEM simulation reference is
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Fig. 7. Horizontal and vertical displacements computed at the free surface
for the model of Fig. 4 excited by the superficial source 3. Motion ampli-
fication is bigger than in the two previous cases (Figs. 5–7 are all plotted at
the same scale).

Fig. 8. Layer characterized by flat free surface, irregular smooth interface
and mechanical properties different from half space. The model was used to
validate our technique with another numerical method (the SEM).

Fig. 10. Layer characterized by irregular free surface and interface, layer
mechanical properties are different from half space properties.

Fig. 9. Synthetic seismograms at the free surface for the model of Fig. 8.
Our results (continuous line) and the solution obtained by the spectral
element method (dashed line) are compared. The agreement between the
traces is impressive.



made to Komatitsch et al. [31]. The synthetics we present
(Fig. 11) are obtained for source 2. Agreement between the
two solutions is not as good as in the former example. The
differences between the two calculations are due to edge
effects. Two effects contribute to the discrepancies in late
phases and amplitudes. There is interference between waves
diffracted at the edges and inside the valley. For the example
we presented in Fig. 1, it was possible to recognize back-
ward propagating waves, produced by edge effects; now
identification of different groups is no longer possible.
Moreover, we have already explained that truncating the
surfaces we neglect the contribution of radiating sources,
if the discretized surface is too short a considerable amount
of waves is lost and synthetics cannot be precise. The pertur-
bations travel time governs the time window in which the
solution is good. The motion predicted for the first seconds,
when displacement reaches its maximum amplitude, is very
well reproduced. Considering the first 5 s, motion computed
at lateral receivers is quite similar to the one calculated with
the model of Fig. 8; displacement field is dominated by
direct arrival and major reflections at the interface. Later
on, diffracted-scattered fields generated at the irregular
topography interfere modifying motion pattern. Comparing

with the previous example, inside the valley we notice an
increased amplification level and longer duration, the
double irregularity is such that diffracted and scattered
waves cannot be easily radiated to infinity.

6. Conclusions

We have presented an IBEM application to layered media
excited by a dilatational line source. Excellent results were
obtained with minimum computational effort. In further
applications to inversion problems, the efficiency of the
method should be increased optimizing the system solution
in order to reduce memory requirements and, more impor-
tantly, computational times. The examples we presented
evince significant effects due to surface geology. Their
correct assessment is crucial in the analysis of seismic risk.
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sismiques dans des structures a` géométrie bidimensionnelle, de´vel-
oppement the´orique et applications. Ph.D. thesis, Universite´ Joseph
Fourier, Grenoble, 1994.

[30] Yokoi T, Takenaka H. Treatment of an infinitely extended free
surface for indirect formulation of the boundary element method. J
Phys Earth 1995;43:79–103.

[31] Komatitsch D, Vilotte JP, Vai R, Castillo-Covarrubias JM, Sa´nchez-
Sesma FJ. The Spectral Element method for elastic wave equations:
application to 2D and 3D seismic problems. Int J Numer Meth Engng
(submitted).

R. Vai et al. / Soil Dynamics and Earthquake Engineering 18 (1999) 11–1818


