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We apply a spectral element method based upon a conforming mesh of quadrangles and triangles
to the problem of 2-D elastic wave propagation. The method retains the advantages of classi-
cal spectral element methods based upon quadrangles only. It makes use of the classical Gauss–
Lobatto–Legendre formulation on the quadrangles, while discretization on the triangles is based
upon interpolation at the Fekete points. We obtain a global diagonal mass matrix which allows us
to keep the explicit structure of classical spectral element solvers. We demonstrate the accuracy
and efficiency of the method by comparing results obtained for pure quadrangle meshes with those
obtained using mixed quadrangle-triangle and triangle-only meshes.

1. Introduction

In the context of seismic wave propagation it is important to be able to compute accu-

rate synthetic seismograms using numerical techniques. For more than two decades the

most widely used approaches have been the finite difference method1,2 and the global pseu-

dospectral method.3,4 Finite difference methods are very popular because of their ease of

implementation, but suffer from numerical dispersion and from difficulties related to the

implementation of boundary conditions, in particular at the free surface. Pseudospectral

methods exhibit very weak numerical dispersion, but instabilites arise in the treatment of

boundary conditions and induce difficulties in the time integration scheme.5 Moreover, due
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to the use of a global polynomial basis, numerical oscillations appear in the presence of

strong heterogeneities or sharp boundaries within the model. Classical finite element meth-

ods (FEM) circumvent most of these problems, but are based upon low-order approximations

and come with high numerical overhead because of the large linear systems involved, par-

ticularly in the 3-D case.6

In this respect, the spectral element method (SEM), which is based upon a high-order

piecewise-polynomial approximation of the weak formulation of the wave equation, has

gained significant interest in the seismic modeling community. The classical SEM, which

is based on quadrangles in 2-D, and on hexahedra in 3-D, is a high-order method which

suffers from very limited numerical dispersion, and the free surface condition is naturally

taken into account in the context of the weak formulation.7,8 In the implementation based

on Legendre polynomials the mass matrix is exactly diagonal by construction,9–12 which

results in a drastic reduction in the computational cost, and which enables one to deal

with large-scale 3-D structures accurately. Furthermore, complex models that include

anisotropy,13 fluid/solid interfaces14 or attenuation12 can be naturally modeled with classical

SEMs. The implementation of a SEM on parallel computers based upon the message-passing

interface (MPI) is highly efficient,12,15 which provides a significant advantage over classical

pseudospectral approaches.

However, one of the major difficulties associated with the classical SEM is the fact that

it is very difficult to mesh realistic geological structures with quadrangles only in 2-D, and

even more difficult in 3-D with hexahedra only. This stems from the fact that, for reasons

related to accuracy, a good mesh has to honor the main features of a geological structure,

such as the main geological interfaces, faults, and velocity contrasts. In this respect, clas-

sical FEMs based on triangles in 2-D and on tetrahedra in 3-D are much more flexible.6

Therefore, in the context of a SEM, it is interesting to introduce more flexibility during

the mesh generation step by allowing the use of other types of elements, such as triangles

in 2-D or wedges in 3-D, for instance, in regions of steep topography or near basin edges.

Similar ideas have previously been used to combine the efficiency of classical techniques,

such as finite difference methods, with the flexibility of FEMs.16 An interesting approach

consists of coupling classical SEMs with FEMs based upon triangles using the so-called

mortar method.17,18 This elegant approach allows for a nonconforming matching between

spectral element and finite element meshes, but is difficult to implement and increases the

numerical cost.

The most popular approach for triangular SEMs has been that developed by Dubiner,19

Sherwin and Karniadakis20 and Wingate and Boyd.21 This method uses a warped tensor

product grid within each triangle, designed for the accurate approximation of integrals. It

retains the accuracy associated with the SEM on quadrangles and has enabled solutions

to problems on mixed meshes. However, unlike the grids used in quadrangles, the warped

tensor product grid is oversampled. It requires twice as many points as there are degrees of

freedom in the polynomial expansion. This characteristic results in the loss of the diagonal

mass matrix.

An alternative approach is to use critically sampled points in the triangle designed for

accurate approximation rather than for integration, such as the Fekete points.22,23 These
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points are a natural generalization of the points used by the SEM on quadrangles. They en-

able a conforming matching between triangles and quadrangles while keeping the important

properties of classical SEMs, including the diagonal mass matrix.24

The purpose of this paper is to apply the Fekete point technique to the problem of 2-D

elastic wave propagation. We illustrate the accuracy of the method by comparing the results

obtained for the case of a homogeneous medium using a mesh of quadrangles only with those

obtained using a mixed mesh, as well as a mesh of triangles only. Detailed comparisons to

the analytical solution are presented and demonstrate that triangles are only slightly less

accurate than quadrangles of the same size. For a polynomial degree N = 5, good accuracy

is obtained with quadrangles using roughly 4.5 points per wavelength, while triangles require

roughly 6 points per wavelength to reach a similar level of precision.

2. Elastic Wave Equation

In a heterogeneous elastic medium, the linear wave equation may be written as

ρü = ∇ · σ + f , (2.1)

where u denotes the displacement vector, σ the symmetric stress tensor, ρ the density, and

f an external force. A dot over a symbol denotes time differentiation. Even though the

SEM can deal with fully anisotropic media13 and with elastic media with fluid regions,14 for

simplicity we will restrict ourselves to linear elastic isotropic media. In that case, Hooke’s

law relating components of strain εij = (∂iuj + ∂jui)/2 to those of stress σij reduces to

σij = λδijεkk + 2µεij , where λ and µ are the two Lamé parameters, and where δij denotes

the Kronecker delta. In the case of a medium with free surfaces, e.g., the surface of the

Earth, the boundary condition is zero traction at the surface: σ · n̂ = 0, where n̂ is the unit

outward normal vector.

3. Classical Spectral Elements on Quadrangles

In a spectral element approach, the strong form of the equations of motion (2.1) is first

rewritten in a variational or weak formulation. This is accomplished by dotting it with an

arbitrary test vector w and integrating by parts over the region of interest,25 which gives∫
Ω
ρw · ü dΩ +

∫
Ω
∇w : σ dΩ =

∫
Ω

w · f dΩ . (3.1)

Here Ω denotes the physical region of interest. A colon denotes the tensor product. In the

integration by parts, we have used the fact that the traction vanishes on the free boundaries

of the domain.

The classical Legendre spectral element discretization of problem (3.1) based upon quad-

rangles proceeds as follows: a conforming mesh of nel nonoverlapping quadrangles Ωe is

defined on the domain Ω, as in a classical FEM. These elements are subsequently mapped

individually to a reference square Λ = [−1, 1] × [−1, 1] using an invertible local mapping

Fe : Λ → Ωe, which enables one to go from the physical domain to the reference domain,

and vice versa.
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On the reference square Λ, we introduce a set of local basis functions consisting of

polynomials of degree N . On each element Ωe, mapped to the reference square Λ, we define

a set of nodes and choose the polynomial approximations ueN and we
N of u and w to be the

Lagrange interpolants on this set of nodes. These nodes, ξp ∈ [−1, 1], p ∈ 0, . . . ,N , are the

Gauss–Lobatto–Legendre (GLL) points, which are the N + 1 roots of (1 − ξ2)P ′N (ξ) = 0,

where P ′N (ξ) is the derivative of the Legendre polynomial of degreeN . They can be computed

numerically.26 On the reference square Λ, the restriction of a given function uN to the element

Ωe can be expressed using a product of 1-D Lagrange interpolants, a property that is often

referred to as the tensorisation of the basis:

ueN (ξ, η) =
N∑
p=0

N∑
q=0

ueN (ξp, ηq)hp(ξ)hq(η) . (3.2)

Here hp(ξ) denotes the p-th 1-D Lagrange interpolant at the (N +1) GLL points introduced

above, which is by definition the unique polynomial of degree N that is equal to one at

ξ = ξp and to zero at all other points ξ = ξq for which q 6= p. From this definition we obtain

the fundamental property:

hp(ξq) = δpq . (3.3)

Once we have invoked the piecewise-polynomial approximation (3.2), the integrals in (3.1)

can be approximated at the elemental level using the GLL integration rule:∫
Ω
uNwN dΩ =

nel∑
e=1

∫
Ωe

ueNw
e
N dΩ '

nel∑
e=1

N∑
p=0

ωp

N∑
q=0

ωqJe(ξp, ηq)u
e
N (ξp, ηq)w

e
N (ξp, ηq) . (3.4)

The quadrature weights ωp > 0, which are independent of the element, are determined

numerically,26 and Je is the Jacobian associated with the mapping Fe from the element Ωe

to the reference square Λ. Gradients are first computed on the reference square Λ:

∂ξu
e
N (ξ, η) =

N∑
p=0

N∑
q=0

ueN (ξp, ηq)h
′
p(ξ)hq(η)

and ∂ηu
e
N (ξ, η) =

N∑
p=0

N∑
q=0

ueN (ξp, ηq)hp(ξ)h
′
q(η) , (3.5)

where h′ denotes the derivative of the 1-D Lagrange interpolant, which is calculated analyti-

cally. We subsequently use the chain rule to compute the derivatives in the physical domain,

the components of the Jacobian matrix being computed based upon the mapping Fe. Be-

cause of the tensorisation, when evaluating the gradient at any of the GLL points (ξi, ηj) of

the local mesh, using definition (3.3) of the Lagrange interpolants, Eq. (3.5) reduces to:

∂ξu
e
N (ξi, ηj) =

N∑
p=0

ueN (ξp, ηj)h
′
p(ξi) and ∂ηu

e
N (ξi, ηj) =

N∑
q=0

ueN (ξi, ηq)h
′
q(ηj) . (3.6)
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Therefore the cost for computing a derivative is exactly N + 1 multiplications and N

additions, for a total of 2N + 1 operations.

After this spatial discretization with spectral elements, imposing that the variational

formulation holds for any test vector w, as in a classical FEM, we have to solve an ordinary

differential equation in time. Denoting by U the global vector of unknown displacement in

the medium, this system can be written in matrix form as

MÜ +KU = F , (3.7)

where M is the mass matrix, K the stiffness matrix, and F the source term. As mentioned

previously, a very important property of the Legendre SEM, which allows for drastic reduc-

tions in the complexity and cost of the algorithm, is the fact that the mass matrix M is

exactly diagonal by construction as a consequence of the choice of Lagrange interpolants

at the GLL points in conjunction with the GLL integration rule. This constitutes a major

difference compared to classical FEMs.11,12

To take full advantage of this property, discretization of the second-order ordinary differ-

ential equation in time (3.7) is achieved using a classical explicit Newmark scheme,25 which

is second-order accurate and conditionally stable. Usually a force source is considered, as in

Eq. (2.1), and zero initial displacement and velocity are assumed throughout the model.

4. Spectral Elements on Triangles

The natural extension of the diagonal-mass-matrix spectral element method to triangles

would be to use GLL points in each triangle. Unfortunately, in the general case it is not

known if such points exist, and if so, constructing them numerically turns out to be an

extremely hard problem. There are a few, low-degree special cases, but there are also degrees

for which it is known that such quadrature formulas do not exist. Many of these results for

the triangle are summarized in Lyness and Cools.27 Gaussian (and Gauss–Lobatto) type

quadrature formulas seem to be extremely rare and restricted to a few domains like the

[−1, 1] interval and its tensor products.

An alternative to the GLL points in the triangle is to choose points optimized for their in-

terpolation and approximation properties, rather than quadrature. Recent work in this area

includes the Fekete points, mean-L2 points, and minimum energy electrostatic points.22,28,23

These points are the solutions to extremal problems and must be computed numerically, but

in most cases the minimization is a much more tractable problem than computing optimal

quadrature points. All of these points have natural extensions to three dimensions. They

have been computed for the tetrahedron,29,30 and in wedges one would use a tensor product

of Fekete points in the triangle with the GLL points in the third direction.

For the SEM, we choose the Fekete points over other possible interpolation points for

the following reasons:

• On the [−1, 1] interval in the 1-D case, Fekete points are the GLL points.31

• On the square, Fekete points have recently been shown to be the tensor product of the

GLL points.32 Thus the conventional SEM can also be considered a Fekete point SEM.
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• Under suitable assumptions, one can show that the Fekete points along each edge of the

triangle are the GLL points.33 This has been verified numerically up to degree N = 19 in

Taylor and Wingate.23 Thus the Fekete points provide a natural coupling with a SEM on

quadrangles.

• Fekete points have near-optimal interpolation properties, and for degrees N > 9 they are

the best interpolation points known for the triangle.23

The Fekete points (and other near-optimal interpolation points) are defined relative to

a finite-dimensional space of functions from which the interpolants are constructed. Thus

one must first determine the correct functional space for the SEM. Usually, the functional

spaces for high-order finite elements are built based upon polynomials. As mentioned in the

previous section, the SEM for quadrangles uses a tensor product of Lagrange interpolating

polynomials. Their span is the space of polynomials in ξ and η which have a maximum

degree in ξ or η of at most N . For the triangle, the most natural and commonly used

polynomial space is the set of two-dimensional polynomials in ξ and η with a total degree of

at most N . This space has dimension Nt = (N +1)(N +2)/2, and thus in order to construct

interpolating polynomials we need exactly Nt points.

Once the polynomial space is chosen, the Nt Fekete points are defined in terms of a

generalized Vandermonde matrix V (e.g., Ref. 34). Let {Dp}, p = 1, . . . ,Nt, be any basis

for the set of polynomials with degree of at most N . Let {(ξp, ηp)} be a set of points

in the right triangle of base [−1, 1] and height [−1, 1]. The (q, p) component of the Vander-

monde matrix is Dq(ξp, ηp). The Fekete points are those which maximize the determinant of

the Vandermonde matrix, |V |, where the maximum is taken over all possible sets of points

in the triangle. Fekete points are independent of our choice of basis, since any change of

basis only multiplies the determinant by a constant independent of the points. However, in

practice for numerical computations it is very important to use a well conditioned orthogonal

basis for the triangle. Maximizing |V | makes this matrix far from singular.

According to Bos,32 there is a maximum number of points lying on the boundary, and

they are exactly the 1-D GLL points. Therefore, the Fekete triangular elements naturally

conform with the classical quadrilateral elements. In order to have a suitable orthogonal

basis in the triangular polynomial truncation space given above, we use the Dubiner

polynomials.19 The matrix V can then be thought of as the inverse of the Dubiner trans-

form matrix, and maps Dubiner coefficients of a function into the grid-point values of that

function at (ξp, ηp). A stable procedure for performing the maximization using the steepest

descent algorithm is given in Taylor and Wingate.23 This approach is extremely sensitive to

the initial conditions. The best initial guess for the point distribution turns out to be the

set of points generating a density approximating the extremal measure for the triangle given

in Baran.35 The Fekete points (ξp, ηp) for the case N = 5 are illustrated in Fig. 1.

From the definition of the Fekete points, it can be shown that the Lagrange interpolating

polynomials are bounded by 1 inside the triangle, and thus achieve their maximum at these

points. This property is also shared by the interpolants at the GLL points, since they are

the Fekete points for the square. This bound can then be used to derive classical bounds
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Fig. 1. Equilateral triangle showing the (N + 1)(N + 2)/2 = 21 Fekete points for the case of a polynomial
degree N = 5, and quadrangle showing the (N+1)2 = 36 Gauss-Lobatto-Legendre points. The Fekete points
on the edge of the triangle and the Gauss-Lobatto-Legendre points on the edge of the quadrangle exactly
match in the global mesh. There are N + 1 = 6 points on the common edge.

on interpolation, differentiation and integration, which show that the Fekete points are well

suited for all these tasks. In general, other point sets will generate interpolants which are

not bounded by 1. Poorly chosen interpolation points are unusable in a numerical method

because their interpolating polynomials have strong oscillations between the points.

To use Fekete points in the SEM, we need to compute the Lagrange interpolants and

their derivatives. The most convenient way of doing this is to expand the interpolants in

terms of Dubiner polynomials:

Φp(ξ, η) =
Nt∑
j=1

apjDj(ξ, η) . (4.1)

The coefficients of the Dubiner expansion apj are given by the (p, j) elements of the inverse

Vandermonde matrix. To compute these coefficients, the Vandermonde matrix is inverted

numerically. The derivatives of the Lagrange interpolants are then given by

∂ξΦp(ξ, η) =
Nt∑
j=1

apj∂ξDj(ξ, η) and ∂ηΦp(ξ, η) =
Nt∑
j=1

apj∂ηDj(ξ, η) , (4.2)

since the partial derivatives of the Dubiner polynomials are known analytically. These values

are computed once and for all and stored for use by the SEM.

The displacement field and the test functions are then expressed at the element level

just as in the case with quadrangles. Using the Nt interpolation functions Φp, we write:

ueN (ξ, η) =
Nt∑
p=1

ueN (ξp, ηp)Φp(ξ, η) . (4.3)

Their partial derivatives are obtained by analytically differentiating the Φp:

∂ξu
e
N (ξ, η) =

Nt∑
p=1

ueN (ξp, ηp)∂ξΦp(ξ, η) and ∂ηu
e
N (ξ, η) =

Nt∑
p=1

ueN (ξp, ηp)∂ηΦp(ξ, η) . (4.4)
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These derivatives can be evaluated at the Nt Fekete points (ξq, ηq) based upon knowledge

of the two Nt ×Nt derivation matrices ∂ξΦp(ξq, ηq) and ∂ηΦp(ξq, ηq). We see from Eq. (4.4)

that the cost of calculating a derivative is exactly Nt multiplications and Nt − 1 additions,

for a total of 2Nt − 1 = (N + 1)(N + 2)− 1 operations. Relative to the case of quadrangles

detailed in the previous section, we have lost the so-called tensorisation of the basis.

To evaluate the integrals needed in the SEM, we use a procedure similar to that used in

quadrangles. Within each triangular element Ωe, we have:

∫
Ωe

ueNw
e
N dΩ '

Nt∑
p=1

ωpJe(ξp, ηp)u
e
N (ξp, ηp)w

e
N (ξp, ηp) . (4.5)

The quadrature weights ωp are determined in the same fashion as for the classical GLL

points, i.e., they are the only set of weights which integrate exactly all the basis functions

of degree N . For the triangle, the pth weight is given by the first Dubiner coefficient of the

p-th interpolating polynomial.

As mentioned above, the Fekete points exactly correspond to the GLL points on the

three edges of the triangle. Therefore, as illustrated in Fig. 1, for a given geological structure,

mixed unstructured meshes, composed of both quadrangles and triangles in which the points

on the edges of both types of elements match exactly, can be constructed. In this fashion,

high flexibility can be attained during the mesh generation phase for complex geological

structures, thus reducing the difficulties of mesh creation based upon quadrangles only. Let

us mention that many powerful meshing tools exist for that purpose in the finite-element

community, which can be used directly to create mixed meshes for the SEM.

Since all the points match on the common edge between a quadrangle and a triangle,

and since the same polynomial degree is used for the approximation on both elements, the

continuity of the field is ensured everywhere on the common edge. Therefore, the contribu-

tions to the global system, computed separately for both elements, can be assembled in the

same manner as in the classical SEM based upon quadrangles. The global mass matrix for

a mixed mesh remains diagonal since the elementary mass matrices are diagonal for both

types of elements. Thus, the very efficient structure of classical spectral-element solvers is

preserved, in particular the high efficiency on parallel computers,12 and the new type of

element is easily embedded in an existing spectral-element solver. The main difference in-

troduced by the triangular elements is that, on a triangle, the tensorisation of the classical

quadrangular spectral elements is lost, and therefore the cost of computing a derivative on

a triangle is (N + 1)(N + 2) − 1, whereas it is only 2N + 1 on a quadrangle. Thus, from

the point of view of computations, triangles are more expensive than quadrangles in a ratio

R = [(N + 1)(N + 2) − 1]/(2N + 1) ' N/2, the latter approximation being valid for large

N . However, in wave propagation problems the polynomial degree N always remains small,

typically between five and eight,10–12 and therefore this increase in CPU cost will be reason-

able in practical situations, particularly if the mesh is mainly composed of quadrangles, with

a few triangles. This additional cost would be more significant in the case of 3-D elements

such as wedges or tetrahedra.
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5. Numerical Validation

In order to validate the method, to demonstrate its efficiency, and estimate its accuracy with

respect to classical SEMs based upon quadrangles, we consider a 2-D homogeneous test case

consisting of a block of size 2400 m × 2400 m, with P -wave velocity cp = 3200 m/s, S-wave

velocity cs = 1847.5 m/s, and density ρ = 2200 kg/m3. The source is a vertical force

placed exactly in the middle of the model at xs = 1200 m and zs = 1200 m. To study the

dispersion of waves traveling through the grid several times, we use periodic conditions on all

the sides of the model, thus simulating an infinite medium with a network of identical sources

periodically repeated along the horizontal and vertical directions. The analytical solution for

such a problem can be computed by summing the contributions of all the individual sources

calculated based upon the Green’s function of the medium36; this analytical solution will be

used as a reference in what follows.

We first use a classical SEM based upon quadrangles only. The regular mesh consists of

48 × 48 spectral elements of size 50 m × 50 m. A polynomial degree N = 5 is used within

each element, and therefore the global grid contains (48× 5 + 1)2 = 58081 points. Using a

classical SEM with N = 5 the minimum number of grid points per wavelength required for

an accurate simulation is roughly five.12 Therefore, we select for the time dependence of the

source a Ricker wavelet, i.e., the second derivative of a Gaussian, with dominant frequency

f0 = 16 Hz and onset time t0 = 0.07 s. This gives a mean value of 4.6 points per S-wavelength

at the highest frequency fmax at which the Ricker wavelet has some significant energy, which

is fmax ' 2.5f0. Since the GLL points are not evenly spaced, it is not possible to define a

uniform number of points per wavelength, and the mean value given here is computed by

averaging over an element, i.e., computing the number of elements per wavelength and

dividing by N + 1, the number of points per element, as if they were evenly spaced.

We purposely choose a small time-step ∆t in order to ensure that the contribution of

the finite-difference time scheme to the global numerical error is small in the comparisons

between the spectral element results and the analytical solution, since we want to focus on

validating the spatial discretization. We therefore use ∆t = 0.5 ms and we propagate the

signal for 2 s, i.e., a total of 4000 time-steps. Such a value of the time-step also verifies

the Courant stability condition of the explicit Newmark scheme. Since the time scheme we

use is only second-order accurate, it might in the future be of interest to use higher-order

schemes37 to be consistent with the high-order spatial discretization used in the SEM.

Figure 2 shows the two components of the displacement vector recorded at a receiver

located at xr = 2000 m and zr = 2000 m, a distance of 1131.4 m from the source. We clearly

observe the direct P -wave (around t = 0.4 s) and direct S-wave (around t = 0.6 s) generated

by the source, as well as similar waves that have traveled two, three or four times through

the grid (after t = 0.65 s) because of the periodic conditions. In order to estimate the

accuracy of the classical SEM for this test case we also present the analytical solution. Since

the two curves are almost superimposed, we plot the difference (residual) between them

amplified by a factor of five for clarity. The overall agreement is excellent, illustrating that

the classical SEM is highly accurate. The residual is larger for the S-wave around t = 0.6 s
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than for the P -wave around t = 0.4 s, as expected, since the S-wavelength is shorter than

the P -wavelength and thus sampled by fewer grid points. The residual slightly increases with

time, because of the accumulated dispersion error for waves that have traveled several times

through the grid. Next, we wish to validate the SEM for triangles and estimate its accuracy.

We therefore redo exactly the same simulation, but first using a mixed mesh of quadrangles

with four lines of triangles, and subsequently using a mesh of triangles only. In order to be
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Fig. 2. Horizontal (a) and vertical (b) component of displacement (solid line) recorded at a receiver located
at xr = 2000 m and zr = 2000 m, for a 2400 m × 2400 m block with a vertical force source located in its
middle, at xs = 1200 m and zs = 1200 m. The distance between the source and the receiver is 1131.4 m. The
dominant frequency of the Ricker source is f0 = 16 Hz. The medium is discretized using 48 × 48 classical
quadrangular spectral elements, with a polynomial degree N = 5. The direct P -wave (around t = 0.4 s)
and direct S-wave (around t = 0.6 s) can be clearly observed, as well as similar waves that have traveled
several times through the grid because of the periodic conditions (after t = 0.65 s). The analytical solution
is also presented (dashed line), as well as the residuals between the two curves amplified by a factor of five
for clarity (dotted line). The numerical and analytical solutions are in excellent agreement.
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Fig. 3. Snapshot at time t = 0.5 s for a homogenous block of size 2400 m × 2400 m, with a vertical force
source (indicated by the cross) located in its middle, at xs = 1200 m and zs = 1200 m, for the case of a
mesh composed of quadrangles with four lines of triangles, with 48 elements in each direction of the grid.
The direct P and S-waves can be clearly observed, as well as similar waves coming back from the edges of
the model because of the periodic conditions. The receiver (indicated by the losange) located at xr = 2000 m
and zr = 2000 m is used for a comparison to the analytical solution in Fig. 4.

able to compare the results to those obtained with quadrangles only, we use triangles of the

same horizontal and vertical size as the quadrangles, thus having a base and a height of

50 m. This means that the triangles used are close to the optimal equilateral shape since

the ratio of the length of their edges to the length of their base is
√

5/2 ' 1.12. The mesh

with four lines of triangles is illustrated in Fig. 3, where a snapshot of the wavefronts is

presented at time t = 0.5 s. The direct P and S-wavefronts generated by the vertical force

can be clearly observed, as well as waves coming back from the edges of the grid due to the

periodic conditions.

To quantify the numerical dispersion related to the use of triangles precisely, in Fig. 4

we compare the results to the analytical solution, at the same receiver as in Fig. 2 for

quadrangles. We see that in the case of a mesh with quadrangles and four lines of triangles,

the error remains small and is comparable in amplitude to that of Fig. 2 for quadrangles

only, but more oscillations are present, in particular for waves that have traveled several

times through the triangles, as can be seen between t = 1.5 s and t = 2 s. This effect is

particularly clear for the mesh of triangles only, for which the oscillations are stronger, even

for the direct S-wave around t = 0.6 s, and significant phase shifts are observed because of

the numerical dispersion. This means that triangles are less accurate than quadrangles of

the same size and induce more numerical dispersion. In the case of a mesh of only triangles,

it is interesting to see how many elements we need to use to obtain an accuracy of the same

order as that obtained using only quadrangles and 4.6 points per wavelength in Fig. 2. We

therefore redo the simulation using 64 elements in each direction of the grid rather than 48.

This corresponds to a mean value of 6.1 points per shortest S-wavelength instead of 4.6. A

snapshot of the displacement vector is presented in Fig. 5 at time t = 0.5 s. The waves do
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Fig. 4. Horizontal (left) and vertical (right) component of displacement (solid line) recorded at a receiver
located at xr = 2000 m and zr = 2000 m, for a 2400 m × 2400 m block with a vertical force source located
in its middle. With respect to Fig. 2, the medium is discretized using a mesh consisting of quadrangles with
four lines of triangles (top), and triangles only (bottom), with 48 elements in each direction of the grid.
The mesh with four lines of triangles, and a corresponding snapshot of the wavefield, are shown in Fig. 3.
The polynomial degree used is N = 5. The analytical solution is also presented (dashed line) as well as the
residuals between the two curves, amplified by a factor of five for clarity (dotted line). Significant numerical
dispersion is observed, in particular for the direct S-wave around t = 0.6 s for the mesh with triangles only,
and also for waves that have traveled several times through the grid because of the periodic conditions (after
t = 1 s). Comparison with Fig. 2 clearly shows that triangles are less accurate than quadrangles of the
same size.

not seem to exhibit any significant numerical dispersion, in particular the S-wavefront which

has the shortest wavelength. To quantify this precisely, in Fig. 6 we show the displacement

recorded at the same receiver as in Figs. 2 and 4. The error has been drastically reduced

compared to Fig. 4, to a level comparable to that obtained with pure quadrangles in Fig. 2.

A similar experiment, not presented here, conducted using 60 elements in each direction of

the grid, i.e., using a mean value of 5.8 grid points per shortest S-wavelength, led to results

that exhibited oscillations significantly bigger than in the reference of Fig. 2. From these two

numerical experiments, we can conclude that the use of roughly 6 points per wavelength is

necessary in the case of a discretization based upon triangles to obtain a level of accuracy

similar to that obtained using 4.5 to 5 points in the case of classical quadrangles. This gives

a numerical overhead ratio of roughly 1.20 to 1.35.
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Fig. 5. Snapshot at time t = 0.5 s for a homogenous block of size 2400 m × 2400 m with a vertical force
source located in its middle, for the case of a mesh composed of triangles only, with 64 elements in each
direction of the grid. The direct P and S-waves can be clearly observed, as well as similar waves coming back
from the edges of the model because of the periodic conditions. The wavefronts do not exhibit any significant
numerical dispersion. The cross indicates the position of the source, and the losange shows the position of
the receiver at which a comparison to the analytical solution is performed in Fig. 6.
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(a)

Fig. 6. Horizontal (a) and vertical (b) component of displacement (solid line) recorded at a receiver located
at xr = 2000 m and zr = 2000 m, for a 2400 m × 2400 m block with a vertical force source located in its
middle. With respect to Figs. 2 and 4, the medium is discretized using a mesh composed of triangles only,
with 64 elements in each direction of the grid. The mesh and a corresponding snapshot of the wavefield are
shown in Fig. 5. The polynomial degree used is N = 5. The analytical solution is also presented (dashed
line) as well as the residuals between the two curves, amplified by a factor of five for clarity (dotted line).
The numerical dispersion has been significantly reduced with respect to the results in Fig. 4 (bottom). We
have reached a level of accuracy comparable to that obtained with a mesh of quadrangles only in Fig. 2.
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Fig. 6. (Continued )

6. Conclusions

We have shown that the use of a spectral element method based upon both quadrangles

and triangles enables us to model wave propagation in 2-D elastic media accurately. The

method, based on the classical Gauss–Lobatto–Legendre points in the quadrangles and on

the Fekete points in the triangles, introduces more flexibility during the mesh generation

step while keeping the most important properties of the classical spectral-element method,

such as a global diagonal mass matrix.

Detailed numerical tests in a homogeneous medium and comparisons with both the

analytical solution and the solution computed with only quadrangles, have illustrated that

triangles are slightly less accurate than quadrangles. Using a polynomial degree N = 5,

very good accuracy is obtained with quadrangles using roughly 4.5 to 5 grid points per

wavelength, while to obtain a similar level of accuracy using triangles, roughly 6 points

per wavelength are required. The use of more points per wavelength also implies a stronger

restriction on the Courant stability condition of the explicit time scheme. On the triangles the

so-called tensorisation of the classical spectral elements is lost, which implies that the number

of operations necessary for computing a derivative is higher. This additional numerical cost

is compensated by the much higher flexibility allowed by the use of two types of elements

in the same mesh.
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Maximum besitzt,” Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mt. Ser. II 1, 263 (1932).

32. L. Bos, personal communication (1998).
33. L. Bos, “On certain configurations of points in Rn which are unisolvent for polynomial interpo-

lation,” J. Approx. Theory 64, 271 (1991).
34. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985).
35. M. Baran, “Complex equilibrium measure and Bernstein type theorems for compact sets in Rn,”

Proc. Amer. Math. Soc. 123, 485 (1994).
36. W. L. Pilant, Elastic Waves in the Earth (Elsevier, Amsterdam, 1979).
37. N. Tarnow and J. C. Simo, “How to render second-order accurate time-stepping algorithms

fourth-order accurate while retaining the stability and conservation properties,” Comput. Meth-
ods Appl. Mech. Engrg. 115, 233 (1994).


