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Simulation of anisotropic wave propagation based
upon a spectral element method

Dimitri Komatitsch∗, Christophe Barnes‡, and Jeroen Tromp∗

ABSTRACT

We introduce a numerical approach for modeling elas-
tic wave propagation in 2-D and 3-D fully anisotropic
media based upon a spectral element method. The tech-
nique solves a weak formulation of the wave equation,
which is discretized using a high-order polynomial rep-
resentation on a finite element mesh. For isotropic me-
dia, the spectral element method is known for its high
degree of accuracy, its ability to handle complex model
geometries, and its low computational cost. We show that
the method can be extended to fully anisotropic media.
The mass matrix obtained is diagonal by construction,
which leads to a very efficient fully explicit solver. We
demonstrate the accuracy of the method by comparing
it against a known analytical solution for a 2-D trans-
versely isotropic test case, and by comparing its predic-
tions against those based upon a finite difference method
for a 2-D heterogeneous, anisotropic medium. We show
its generality and its flexibility by modeling wave prop-
agation in a 3-D transversely isotropic medium with
a symmetry axis tilted relative to the axes of the
grid.

INTRODUCTION

Geological media often exhibit complex features such as
curved interfaces with strong impedance contrasts, faults, and
surface topography that are difficult to incorporate in numeri-
cal simulations of elastic wave propagation. Furthermore, such
media are often seismically anisotropic, for instance as a result
of fractured rocks, fluid-filled cracks (Crampin et al., 1984), or
thin isotropic layering (Backus, 1962). In global seismology,
anisotropy plays an important role in 1-D reference models,
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such as PREM (Dziewonski and Anderson, 1981), as well as
for surface waves propagating along oceanic paths (Forsyth,
1975).

Calculating seismic waveforms in complex geological struc-
tures is a challenging task for most classical methods. For a
homogeneous medium with a high degree of symmetry (e.g.,
transverse isotropy), one can use analytic or semi-analytic so-
lutions (e.g., White, 1982; Payton, 1983). Wave propagation in
an anisotropic layer-cake model can be described based upon
the reflectivity method (Booth and Crampin, 1983) or equiv-
alent media theory (Schoenberg and Muir, 1989). But for the
general case of a heterogeneous, fully anisotropic medium one
needs to turn to numerical methods such as finite difference
(FD) (e.g., Igel et al., 1995) and pseudospectral (e.g., Tessmer,
1995) techniques.

One of the main difficulties with the FD method in the
context of general anisotropic media is the fact that some in-
terpolation of the components of the strain tensor is needed
to determine the components of the stress tensor, due to the
use of staggered grids (Igel et al., 1995). The lowest degree of
symmetry that can be modeled without interpolation is the or-
thorhombic case with axes aligned with those of the computa-
tional grid. An additional problem with FD methods is related
to the implementation of the free surface boundary condition
(Robertsson, 1996), which is approximate and therefore leads
to difficulties in the representation of surface waves.

Fourier methods are very accurate within the model volume
as long as the velocity model considered is smooth (Carcione
et al. 1988, 1992). Unfortunately, the implementation of accu-
rate boundary conditions is very difficult due to the periodic
nature of the Fourier expansion (Kosloff et al., 1984). Nonpe-
riodic basis functions (e.g., Chebychev polynomials) were in-
troduced to alleviate some of these difficulties (Tessmer, 1995).
However, this approach involves a 1-D treatment at the free
surface in order to stabilize the stress-free boundary condi-
tion (e.g., Carcione and Wang, 1993; Komatitsch et al., 1996),
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which reduces the accuracy of the surface waves. Furthermore,
as with the Fourier method, the use of a global basis leads to
inaccuracies in the wave field for models with strong hetero-
geneity or sharp boundaries.

The spectral element method (SEM) was introduced by
Patera (1984) in computational fluid dynamics. It was first
used for modeling seismic wave propagation by Seriani et al.
(1992), and has been successfully applied to 2-D and 3-D
problems related to elastic, isotropic media (e.g., Priolo et al.,
1994; Komatitsch, 1997; Faccioli et al., 1997; Komatitsch and
Vilotte 1998; Seriani, 1998; Komatitsch and Tromp, 1999;
Komatitsch et al., 1999). The method has also been success-
fully applied to problems involving both fluid and solid regions
(Komatitsch et al., 2000). The main attributes of the SEM are
its ability to handle models with steep free-surface topogra-
phy, a highly accurate representation of surface and refracted
waves, and its computational efficiency, in particular on parallel
computers.

In this paper, we extend the SEM to the most general case of
3-D fully anisotropic media with 21 independent elastic coef-
ficients. The Legendre formulation used in this article leads to
a mass matrix that is exactly diagonal by construction, there-
fore resulting in a very efficient fully explicit solver, which is a
very significant advantage over classical finite element meth-
ods. The 2-D transversely-isotropic case with a symmetry axis
aligned with the vertical axis of the grid was studied previ-
ously by Seriani et al. (1995) using a variant of the SEM based
on a Chebyshev formulation leading to a nondiagonal mass
matrix. This 2-D case is obtained here as a particular case of
the general 3-D formulation with diagonal mass matrix. We
validate the approach by comparing it against an analytical so-
lution for a 2-D homogeneous, transversely isotropic model,
and by comparing it against a FD solution for a 2-D heteroge-
neous, anisotropic model. We show its efficiency and its flex-
ibility by studying a 3-D homogeneous model consisting of a
transversely-isotropic medium whose symmetry axis is tilted
with respect to the axes of the grid. We again obtain excel-
lent agreement with the analytical solution on the symmetry
axis.

ANISOTROPIC WAVE EQUATION

In a heterogeneous elastic, anisotropic medium, the linear
wave equation may be written as

ρü = ∇ · σ + f,

σ = C : ε, (1)

ε = 1
2 [∇u + (∇u)T ],

where u denotes the displacement vector, σ the symmet-
ric, second-order stress tensor, ε the symmetric, second-order
strain tensor, C the fourth-order stiffness tensor, ρ the density,
and f an external source force. A dot over a symbol denotes
time differentiation, a colon denotes the tensor product, and a
superscript T denotes the transpose.

In the case of a fully anisotropic medium, the 3-D stiffness
tensor C has 21 independent components. In 2-D, the number
of independent components reduces to 6. Using the reduced
Voigt notation (see e.g., Helbig, 1994), Hooke’s law may be
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Using this reduced notation, the stiffness matrix remains sym-
metric, i.e., cI J = cJ I . The isotropic case is obtained by let-
ting c11 = c22 = c33 = λ + 2µ, c12 = c13 = c23 = λ, and c44 = c55 =
c66 = µ, where λ and µ are the two Lamé parameters; all other
coefficients are then equal to zero.

In the case of a medium with free surfaces (e.g., the edges of
a crystal or the surface of the earth), the boundary condition
is zero traction at the surface: σ · n̂ = 0, where n̂ is the unit
outward normal vector. The reader is referred to Crampin et al.
(1984), Thomsen (1986), or Helbig (1994) for further details on
wave propagation in anisotropic media.

SPECTRAL ELEMENT APPROXIMATION

In a spectral element approach, the strong form of the equa-
tions of motion (1) is first rewritten in a variational or weak
formulation. This is accomplished by dotting it with an arbi-
trary test vector w and integrating by parts over the region of
interest (e.g., Hughes, 1987), which gives∫

�

ρw · ü d� +
∫

�

∇w : C : ∇u d�

=
∫

�

w · f d� +
∫

�abs

w · t d�. (3)

Here � denotes the physical region of interest. Its boundary
� can consist in two parts: a boundary � f on which free sur-
face conditions are implemented, and an artificial boundary
�abs on which absorbing conditions have to be implemented.
In the integration by parts, we have used the fact that the
traction vanishes on the free boundaries � f of the domain.
Therefore, a free surface condition is naturally implemented
in a SEM. In the isotropic case, simple approximate absorbing
conditions can be implemented on �abs by using dampers to ex-
press the traction as a function of the velocity field and of the
model impedances (Clayton and Engquist, 1977; Komatitsch
and Vilotte, 1998). Higher-order, and therefore more precise,
conditions can also be used (Quarteroni et al., 1998), but are
more difficult to implement. As pointed out in Komatitsch and
Tromp (1999), the idea of Clayton and Engquist (1977) can
still be used for transversely isotropic media. For more general
anisotropy, such as the general case considered in this paper,
the easiest solution is to taper the elastic properties such that
the medium becomes transversely isotropic on the artificial
boundary.

The Legendre spectral element discretization of the vari-
ational problem (3) proceeds as follows. A mesh of nel
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nonoverlapping quadrangles in two dimensions, or hexahedra
in three dimensions, �e, is defined on the domain �, as in a clas-
sical finite element method (FEM). These elements are subse-
quently mapped to a reference domain � = [−1, 1]nd (a square
in two dimensions, nd = 2; a cube in three dimensions, nd = 3)
using an invertible local mapping Fe : � → �e, which enables
one to go from the physical domain to the reference domain,
and vice versa.

On the reference domain �, we introduce a set of local basis
functions consisting of polynomials of degree N . On each ele-
ment �e, mapped to the reference domain �, we define a set of
nodes, and choose the polynomial approximation ueN and we

N

of u and w to be the Lagrange interpolant at this set of nodes.
These nodes ξi ∈ [−1, 1], i ∈ 0, . . . , N , are the Gauss-Lobatto-
Legendre (GLL) points which are the (N + 1) roots of

(1 − ξ 2)P ′
N (ξ) = 0, (4)

where P ′
N (ξ) is the derivative of the Legendre polynomial of

degree N . On the reference domain �, the restriction of a given
function uN to the element �e can be expressed as

ueN (ξ, η, γ ) =
N∑
p=0

N∑
q=0

N∑
r=0

ueN (ξp, ηq , γr )h p(ξ)hq(η)hr (γ ),

(5)

where h p(ξ) denotes the pth 1-D Lagrange interpolant at the
(N + 1) GLL points ξi introduced above, which is by definition
the unique polynomial of degree N that is equal to one at ξ = ξp
and to zero at all other points ξ = ξq for which q �= p. From this
definition, we obtain the fundamental property

h p(ξq) = δpq . (6)

Once we have invoked the piecewise-polynomial approxi-
mation (5), the integrals in equation (3) can be approximated
at the element level using the GLL integration rule:

∫
�

uNwN d� =
nel∑
e=1

∫
�e

ueNwe
N d�

�
nel∑
e=1

N∑
i=0

ωi

N∑
j=0

ω j

N∑
k=0

ωk Je(ξi , η j , γk)ueN

× (ξi , η j , γk)we
N (ξi , η j , γk). (7)

The weights ωi > 0, which are independent of the element, are
determined numerically (Canuto et al., 1988, p. 61), and Je is
the Jacobian associated with the mapping Fe from the element
�e to the reference domain �.

The discrete variational problem that has to be solved is
therefore as follows: for all times t , find uN such that for all test
vectors wN we have

〈wN, ρüN 〉 + a(wN , uN ) = 〈wN , fN 〉. (8)

Here we have defined

〈wN , ρüN 〉 =
nel∑
e=1

N∑
i=0

ωi

N∑
j=0

ω j

N∑
k=0

ωk J
i jk
e ρi jke wi jk

e,N · üi jke,N ,

a(wN , uN ) =
nel∑
e=1

N∑
i=0

ωi

N∑
j=0

ω j

×
N∑
k=0

ωk J
i jk
e ∇wi jk

e,N : Ci jk
e : ∇ui jke,N , (9)

〈wN , fN 〉 =
nel∑
e=1

N∑
i=0

ωi

N∑
j=0

ω j

N∑
k=0

ωk J
i jk
e wi jk

e,N · fi jke,N ,

whereρi jk
e = ρe(ξi , η j , γk), wi jk

e,N = we,N (ξi , η j , γk), etc. Gradients
are first computed in the reference domain �:

∂ξu
e
N (ξ, η, γ ) =

N∑
p=0

N∑
q=0

N∑
r=0

× ueN (ξp, ηq , γr )h′
p(ξ)hq(η)hr (γ ),

∂ηu
e
N (ξ, η, γ ) =

N∑
p=0

N∑
q=0

N∑
r=0

× ueN (ξp, ηq , γr )h p(ξ)h′
q(η)hr (γ ),

∂γ u
e
N (ξ, η, γ ) =

N∑
p=0

N∑
q=0

N∑
r=0

× ueN (ξp, ηq , γr )h p(ξ)hq(η)h′
r (γ ).

(10)

where h′ denotes the derivative of the 1-D Lagrange inter-
polant. We subsequently use the chain rule to compute the
derivatives in the physical domain, i.e., ∂x = ξx∂ξ + ηx∂η + γx∂γ ,
∂y = ξy∂ξ + ηy∂η + γy∂γ , ∂z = ξz∂ξ + ηz∂η + γz∂γ , where the com-
ponents of the Jacobian matrix, ξx , ξy , ξz etc. . . are computed
based upon the mapping Fe.

MODELING ANISOTROPY

The effects of anisotropy are represented by the term
a(wN , uN ) in equation (8); all other terms are identical to those
in an isotropic formulation (see e.g., Komatitsch and Vilotte,
1998; Komatitsch and Tromp, 1999). This anisotropic term can
be rewritten as

a(wN , uN ) �
∫

�

σ(uN ) : ∇wN d�. (11)

Written out explicitly, the integrand is given by

σ(uN ) : ∇wN = σi j∂ jwi . (12)

In the fully anisotropic 3-D case, using the definition εi j =
(∂i u j + ∂ j ui )/2 and Hooke’s law (2), equation (12) involves a
sum of terms of the form cαβ∂aub∂cwd , with cαβ the components
of the reduced stiffness matrix (2).

Each of the terms in this expression, integrated over an el-
ement �e, is easily computed by substituting the expansion of
the fields (5), computing gradients using equations (10) and
the chain rule, and using the GLL integration rule (7). As an
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example, let us consider the first term in that developed ex-
pression. We have∫

�e

c11∂xu
e
x∂xw

e
x d� �

N∑
i=0

ωi

N∑
j=0

ω j

N∑
k=0

ωk J
i jk
e ci jk11

×
[
ξ i jkx

N∑
p=0

h′
p(ξi )

N∑
q=0

hq(η j )
N∑
r=0

u pqrxe hr (γk)

+ ηi jkx

N∑
p=0

h p(ξi )
N∑
q=0

h′
q(η j )

N∑
r=0

u pqrxe hr (γk)

+ γ i jk
x

N∑
p=0

h p(ξi )
N∑
q=0

hq(η j )
N∑
r=0

u pqrxe h′
r (γk)

]

×
[
ξ i jkx

N∑
r=0

h′
r (ξi )

N∑
s=0

hs(η j )
N∑
t=0

wrst
xe ht(γk)

+ ηi jkx

N∑
r=0

hr (ξi )
N∑
s=0

h′
s(η j )

N∑
t=0

wrst
xe ht(γk)

+ γ i jk
x

N∑
r=0

hr (ξi )
N∑
s=0

hs(η j )
N∑
t=0

wrst
xe h

′
t(γk)

]
(13)

which, using the fundamental property (6), reduces to∫
�e

c11∂xu
e
x∂xw

e
x d� �

N∑
i=0

ωi

N∑
j=0

ω j

N∑
k=0

ωk J
i jk
e ci jk11

×
[
ξ i jkx

N∑
p=0

u pjkxe h
′
p(ξi ) + ηi jkx

N∑
q=0

uiqkxe h
′
q(η j )

+ γ i jk
x

N∑
r=0

ui jrxe h
′
r (γk)

][
ξ i jkx

N∑
r=0

wr jk
xe h

′
r (ξi )

+ ηi jkx

N∑
s=0

wisk
xe h

′
s(η j ) + γ i jk

x

N∑
t=0

wi j t
xe h

′
t(γk)

]
. (14)

After this spatial discretization with spectral elements, im-
posing that equation (8) holds for any test vector wN , as in a
classical FEM, we have to solve an ordinary differential equa-
tion in time. Denoting by U the global vector of unknown dis-
placement in the medium, we see that we can rewrite equa-
tion (8) in matrix form as

MÜ + KU = F, (15)

where M is traditionally called the mass matrix, K the stiff-
ness matrix, and F the source term. A very important property
of the SEM used here, which allows for a drastic reduction
in the complexity and the cost of the algorithm, is the fact
that the mass matrix M is diagonal as a consequence of the
choice of Lagrange interpolants at the GLL points in conjunc-
tion with the GLL integration rule. This is shown for instance
in Komatitsch and Vilotte (1998), and constitutes a major dif-
ference compared to a classical FEM, or to variants of the SEM
based on a Chebyshev formulation, as introduced by Seriani
et al. (1992) and Priolo et al. (1994).

Time discretization of the second-order ordinary differential
equation in time (15) is achieved using a classical explicit New-
mark scheme (Hughes, 1987, chap. 9), which is second-order
accurate and conditionally stable. We assume zero initial condi-

tions (U = 0 and U̇ = 0 at t = 0) that are easily implemented as
initial displacement and velocity fields in the Newmark scheme.
It is worth mentioning here that in a SEM, the spatial discretiza-
tion is very accurate since it is based on high-degree polyno-
mials. To the contrary, the time discretization used here is only
second-order accurate, therefore reducing the global accuracy
of the scheme, and in this respect it could be of interest to use
higher-order time schemes, for instance based on the work of
Tarnow and Simo (1994).

2-D ANISOTROPIC CRYSTALS

In order to validate the method, we first study 2-D homo-
geneous, anisotropic crystals in the ultrasonic frequency range,
motivated by a previous study of the same problem based upon
the Fourier method (Carcione et al., 1988) and by the 2-D re-
sults obtained by Seriani et al. (1995) using a variant of the SEM
based upon Chebyshev polynomials. These results, as well as
the analytical solution, are used for comparison. We consider
two crystals: apatite and zinc (whose elastic properties are sum-
marized in Table 1). These crystals are homogeneous and trans-
versely isotropic; for simplicity in this first test, we choose the
axis of symmetry of the crystal to coincide with the vertical axis
of the grid. The case of a tilted axis will be studied for a 3-D
medium in the next section.

In the simulations, the size of the crystals is 33 cm × 33 cm,
and all their boundaries are free surfaces. A vertical point force
is applied exactly at the center of the domain. The source time
function is a Ricker wavelet (i.e., the second derivative of a
Gaussian) with dominant frequency f0 chosen in the ultrasonic
frequency range. Due to the very different elastic properties
of the two crystals, f0 is taken to be 300 kHz in the case of
apatite and 170 kHz in the case of zinc. The onset time of
the source is t0 = 6 µs. The medium is discretized using a grid
of 50 × 50 = 2500 spectral elements, and a polynomial degree
N = 5 is used within each element. Thus each element contains
(N + 1)2 = 36 points, and the total number of grid points is
63 001. The number of spectral elements is chosen such that the
resolution is close to 5 grid points per minimum qS wavelength
along the slowest axis of the crystal. Because the test involves
a comparison with a reference solution, we choose a small time
step in the explicit second-order Newmark scheme in order to
be sure that the contribution of the time integration error is
small. We use a time step of 50 ns and propagate the waves for
110 µs (i.e., 2200 time steps).

Snapshots of the displacement vector in the crystals are
shown in Figure 1 at times t = 20 µs for apatite and t = 32 µs for
zinc. The two simulations exhibit strong anisotropy, with typical
curved quasilongitudinal (qP) and quasitransversal (qS) modes

Table 1. Elastic properties and density of the two 2-D trans-
versely isotropic crystals used in the validation tests, in the case
of a symmetry axis aligned with the vertical axis of the grid. The
elastic coefficients have to be multiplied by 1010 to obtain val-
ues in N·m−2. The densities ρ are given in kg·m−3. The other
elastic coefficients are zero for these crystals.

Crystal c11 c13 c33 c55 ρ

Apatite 16.7 6.6 14.0 6.63 3200.
Zinc 16.5 5.0 6.2 3.96 7100.
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(note the very anisotropic qP wavefront in zinc for instance),
and typical cuspidal triangles. We have superimposed the the-
oretical wavefronts for the qP and qS modes (dashed curves),
whose analytical expression can be found in Payton (1983) and
in Carcione et al. (1988). Our simulations reproduce the ex-
pected shape of the wavefronts very well, including the cusps
of the qS mode (very clear in the case of apatite). The snap-
shots are also in good qualitative agreement with similar sim-
ulations performed by Carcione et al. (1988) using a Fourier
method (Figures 3 and 4 of their article). The SEM results do
not exhibit significant noise nor numerical oscillations.

In order to take advantage of analytical expressions for
the displacement along the symmetry axis (Payton, 1983), we
placed two receivers in the crystal exactly above the source
at distances of 3.3 cm and 9.9 cm, respectively. The numerical
and the analytical solution are shown together in Figure 2 for
apatite. Since the two curves are almost superimposed, we also
plot the difference between them amplified by a factor of 5.
The agreement between the two solutions is excellent at both
receivers.

In Figure 3, we show the two components of displacement
recorded in the zinc crystal by a horizontal line of 50 receivers
situated at a distance of 9.9 cm above the source, between
xr1 = 5 cm and xr50 = 28 cm (this line of receivers is indicated
by dots in Figure 1). We clearly see the direct qP and qS waves,
as well as reflections and conversions that occur at the free sur-
faces on all four boundaries of the crystal. The direct qS wave
exhibits a clear cusp close to the center of the receiver line
(i.e., just above the source), in agreement with the theoretical
wavefronts shown in Figure 1.

FIG. 1. Snapshots of the displacement vector in two transversely isotropic crystals: apatite at time t = 20 µs (left), and zinc at time
t = 32 µs (right). The source is a vertical point force applied in the middle of the crystal, indicated by a cross. The mesh represents the
50 × 50 = 2500 spectral elements of degree N = 5. Both crystals exhibit strong anisotropy, with a curved qP wavefront (very strongly
curved for zinc) and a qS wavefront with cuspidal triangles. The analytical wavefronts (dashed lines) have been superimposed and
are in very good agreement with our simulation. The two dots for apatite indicate the position of the two receivers used in Figure 2.
The dotted line for zinc indicates the line of receivers used to record the seismograms of Figure 3.

2-D HETEROGENEOUS, ANISOTROPIC MODEL

To further validate the method, and show that it is able to
handle a heterogeneous medium, we consider the case of a
model composed of two half-spaces: a transversely isotropic
zinc crystal with vertical symmetry axis on the left, identical
to that used in the previous section, and an isotropic material
on the right. This 2-D problem has been studied previously by
Carcione et al. (1988) using a Fourier method. The isotropic
medium is chosen to be close to an “isotropic” version of zinc,
i.e., its P-wave velocity corresponds to the qP-wave velocity
of zinc along the horizontal axis, and its S-wave velocity corre-
sponds to the qS-wave velocity of zinc. The mechanical proper-
ties of the anisotropic and isotropic materials are summarized
in Table 2. The source is a vertical point force located 2 cm
to the left of the interface in the anisotropic half-space. The
source time function is a Ricker wavelet with dominant fre-
quency f0 = 170 kHz and onset time t0 = 6 µs. A horizontal line
of receivers is located 8 cm below the source and is composed
of 49 recorders, one every 5 mm from xr = −12 cm to +12 cm
relative to the interface. The geometry of the experiment is
illustrated in Figure 4. Absorbing conditions are used on the
four edges of the grid in order to simulate two half-spaces in
contact.

For a quantitative comparison, we perform a FD calculation
that is used as a reference. We use a standard staggered FD
scheme that is fourth order in space and second order in time.
No additional interpolation is needed in such a scheme for
transversely isotropic media with respect to the isotropic case.
Spatial resolution is purposely chosen to be very fine in order to
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compute a very precise reference for comparison with the SEM
results. The medium is therefore discretized using a grid spacing
of 0.5 mm. The domain has a size of 68 cm × 64 cm; therefore
the global grid contains 1361 × 1281 points. The simulation uses
4000 time steps of 25 ns for the same reason. A snapshot of the
vertical component of displacement at time t = 60 µs is shown
in Figure 4.

In the SEM simulation, a 65 cm × 65 cm region is discretized
using a much coarser grid of 130 × 130 = 16 900 spectral ele-
ments and a polynomial degree N = 5. Therefore the average
number of grid points per minimum wavelength in the model
is close to 6, and the size of the “equivalent” global grid is
651 × 651 points. As pointed out in Faccioli et al. (1997), in a
SEM, due to the fact that polynomials of high degree are used
for the spatial discretization, a high accuracy is attained by us-
ing a relatively small number of grid points per wavelength.
This means that, from the point of view of computational cost,
SEMs compare very well with widely used techniques such as
high-order FD methods.

The simulation uses 2000 time steps of 50 ns. A snapshot of
the displacement at time t = 32 µs is shown in Figure 5. Dis-
placement is recorded at the same 49 receivers as in the FD

FIG. 2. Numerical (solid line) and analytical (dashed line) ver-
tical component of displacement recorded at two receivers lo-
cated on the symmetry axis of the apatite crystal at distances
of 3.3 cm (top) and 9.9 cm (bottom) above the source. The
position of the receivers is indicated by dots in Figure 1. Be-
cause the two curves are almost superimposed, the difference
between them, amplified by a factor of 5, is also plotted (dotted
line). The horizontal component of displacement, which is zero
on the symmetry axis, is not displayed.

simulation. A seismogram of the vertical component is plotted
in the upper part of Figure 6. This seismogram is compared to
the FD results, and residuals, amplified by a factor of 5, are
shown in the lower part of Figure 6. The agreement is excel-
lent. In Figures 4–6, numerous phases can be identified. The
main ones are summarized in Table 3. For most of the phases,
the following naming convention has been used. The first let-
ter indicates the mode (P/S) of the incoming wave. In the
anisotropic medium, the P and S waves are in fact qP and qS.
A letter “i” indicates an interaction with the interface; a letter
“r” denotes refraction as a P-wave along the interface, since
the vertical P-wave speed is higher in the isotropic part of the

Table 2. Mechanical properties of the elastic materials used in
the numerical experiment with a 2-D heterogeneous medium.
The cIJ are expressed in 1010 N·m−2. The density ρ is expressed
in kg·m−3. The other elastic coefficients are zero.

c11 c13 c33 c55 ρ

Anisotropic 16.50 5.00 6.20 3.96 7100.
Isotropic 16.50 8.58 16.50 3.96 7100.

FIG. 3. Horizontal (top) and vertical (bottom) components of
displacement recorded in the zinc crystal at the line of receivers
shown in Figure 1. Both seismograms show the direct qP wave-
front and the direct qS wavefront with a clear cusp. In addition,
numerous phases reflected and converted on the four bound-
aries (free surfaces) of the crystal are recorded. The seismo-
grams do not exhibit significant noise nor numerical oscilla-
tions except for some small numerical dispersion around the
main cusp of the direct qS wavefront.



SEM for Anisotropic Wave Propagation 1257

medium. The last letter indicates the mode (P/S) of the outgo-
ing wave. Lowercase letters refer to transmitted waves in the
isotropic medium; uppercase letters refer to reflected waves in
the anisotropic medium.

In Figure 7, for four receivers located at xr = −10.5 cm,
−3.5 cm, −1 cm, and +10.5 cm, the individual SEM traces are
compared to the FD results, and the residuals, amplified by a
factor of 5, are also plotted. The agreement is excellent, except
perhaps for the SiS phase. Note that there is a very small time
shift for several phases, and that residuals for waves transmit-
ted in the isotropic domain are systematically smaller. This can
be explained by the well-known fact that the position of the
interface in the FD method is not clearly defined because of
the use of a staggered grid. This induces a time delay that is
larger for reflected than for transmitted waves.

3-D TRANSVERSELY ISOTROPIC MEDIUM
WITH TILTED AXIS

To show the generality of the method and demonstrate its
flexibility, we study the case of a 3-D transversely isotropic
medium with a symmetry axis tilted with respect to the axes of
the computational grid. We wish to validate the method for a
case in which most of the 21 elastic coefficients are nonzero. We
could use a general triclinic medium, but the 3-D transversely
isotropic case presents the big advantage that, for some ma-
terials and in the case of a force source, the displacement can
be computed analytically along the symmetry axis (Carcione
et al., 1992, Appendix A), therefore providing an ideal refer-
ence to validate our algorithm. For a 3-D transversely isotropic

FIG. 4. Snapshot of the FD experiment at time t = 60 µs. The
vertical component of displacement is displayed in grayscale
levels. The displayed area is 68 cm × 64 cm. The vertical thick
line represents the interface between the anisotropic (left) and
isotropic (right) half spaces. The white circle indicates the posi-
tion of the vertical point force. The dashed white line indicates
the position of the 49 receivers used in Figure 6. Numerous
phases, whose detailed description is given in Table 3, can be
identified.

medium, 5 of the 21 elastic coefficients are independent, and if
the symmetry axis is aligned with one of the axes of the grid,
only 9 coefficients are nonzero. But after an arbitrary rotation,
many of them become nonzero, thus validating the full algo-
rithm. In addition, in a realistic geological model with curved
layers, the symmetry axis, if any, would most likely not coincide
with any grid axis.

We therefore study a homogeneous block of Mesaverde
clay shale, whose five independent elastic coefficients for a
vertical symmetry axis before rotation are given in Table 4.
These parameters are taken from Thomsen (1986) and Car-
cione et al. (1992). The four other nonzero coefficients are
c22 = c11, c55 = c44, c23 = c13, and c66 = (c11 − c12)/2. The block
has a size of 2500 m × 2500 m × 2500 m. All its edges are free
surfaces. We rotate the vertical symmetry axis by 30◦ about
the horizontal x-axis. General formulas for rotating the stiff-
ness tensor expressed in reduced Voigt notation can be found in
Helbig (1994, Appendix 3C). We place a force source inside the
block at x = 1250 m, y= 1562.5 m, and z= 937.5 m. The force
acts exactly along the symmetry axis. The time dependence
of the source is a Ricker wavelet with dominant frequency
f0 = 16 Hz, and onset time t0 = 0.07 s. The medium is discretized

FIG. 5. Snapshot of the displacement vector obtained with the
SEM at time t = 32 µs for a heterogeneous medium composed
of a transversely isotropic zinc crystal with vertical symmetry
axis (left) and an isotropic material (right). The area displayed
in this closeup has a size of 34 cm × 34 cm. The vertical thick
line represents the interface. The point source, indicated by the
cross, is placed at a distance of 2 cm from the interface. The line
of receivers is indicated by the dotted line between the two di-
amonds. The wavefronts show a very anisotropic shape, close
to the one recorded for pure zinc (Figure 1), in the left part
of the medium; in the right part, which is isotropic, the wave-
fronts are almost circular. This simulation is in good qualita-
tive agreement with similar results computed in another study
based upon the Fourier method (see Figure 5 in Carcione et al.,
1988). Numerous reflected, transmitted, and converted phases
can be observed (see the text and the snapshot in Figure 4 for
more details).
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using a grid of 48 × 48 × 48 spectral elements. We use a poly-
nomial degree N = 5 within each element; therefore, the total
number of points of the global grid is (5 × 48 + 1)3 = 13 997 521.
The signal is propagated for 1 s using a time step of 0.5 ms in
the explicit Newmark scheme, for a total of 2000 time steps. As
underlined in Komatitsch and Tromp (1999) for the isotropic
case, the 3-D SEM code is implemented on a parallel machine
with distributed memory, based upon the Message Passing In-
terface (MPI), and a high parallel efficiency is obtained, which
is one of the important features of the SEM.

Figure 8 shows a snapshot at time t = 0.25 s of the projec-
tion of the displacement field onto a 2-D (y, z) cutplane at
x = 1250 m in the middle of the block. The qP and qSV wave-
fronts can be clearly observed, tilted by 30◦ from the vertical di-
rection, as expected. In particular, the qSV wavefront exhibits
four very clear cuspidal triangles, two of which propagate along
the symmetry axis, and the two others in the perpendicular di-
rection.

As shown by Carcione et al. (1992), for the Mesaverde clay
shale, we can compute the analytical solution for the displace-

FIG. 6. Vertical component of displacement recorded at 49 re-
ceivers in the SEM simulation (top). The location of the re-
ceivers is indicated in Figures 4 and 5. In order to enhance the
amplitude, the clipping factor is set to 1/8th of the maximum
amplitude in each seismogram. The notation in Table 3 is used
for identification of the main phases. The FD seismogram is
not displayed because it is almost identical to the SEM result.
Instead, we plot, at the same scale but without clipping, the dif-
ference between the seismograms computed with both meth-
ods, amplified by a factor of 5 (bottom). The small amplitude
of these residuals clearly shows that the agreement between
the two methods is excellent, except perhaps for the last phase
in the anisotropic medium (SiS).

ment along the symmetry axis. Because of the symmetry, the
only nonzero component is precisely the component along the
symmetry axis. We therefore place a receiver on the symmetry
axis, at a distance of 728.9 m from the source, as shown in Fig-
ure 8. In Figure 9, we plot the displacement computed using
the SEM, as well as the analytical solution. The agreement is
excellent, both for the qP wave around t = 0.25 s, and for the
very strong qSV wave between t = 0.4 and t = 0.5 s, apart from
a very small difference in the amplitude of the qSV wave. The
weak signal present around t = 0.65 s is a wave reflected from
one of the free surfaces of the block.

CONCLUSIONS

We have shown that the use of a spectral element method
allows one to model wave propagation in fully anisotropic
2-D and 3-D elastic media, including in the presence of a
free surface. The method provides high accuracy for 2-D test
cases involving homogeneous transversely isotropic crystals
with known analytical solutions. Strongly curved qP and qS
wavefronts are well reproduced, including cuspidal triangles.

Table 3. Identification of the main phases present in the het-
erogeneous experiment. All these phases can be seen on the
snapshot displayed in Figure 4. Those that are the most ener-
getic can also be observed on the seismogram in Figure 6 and
on the traces in Figure 7.

P Direct qP-wave in the anisotropic medium

PiP qP-wave reflected off the interface
PiS qP-wave reflected off the interface and

converted into a qS-wave
Pip qP-wave transmitted as a P-wave into the

isotropic medium
Pis qP-wave transmitted as an S-wave into the

isotropic medium
PiriP qP-wave refracted in the isotropic medium

along the interface and reflected into the
anisotropic medium as a qP-wave

PiriS qP-wave refracted in the isotropic medium
along the interface and reflected into
the anisotropic medium as a qS-wave

Pirip qP-wave refracted in the isotropic medium and
transmitted as a P-wave into the isotropic
medium

S Direct qS-wave in the anisotropic medium
S′ Part of the direct qS-wave (cuspidal zone)

that arrives before the direct wave labeled S
SiS qS-wave reflected off the interface
SiP qS-wave reflected off the interface and

converted into a qP-wave
Sis qS-wave transmitted as an S-wave into the

isotropic medium
Sip qS-wave transmitted as a P-wave into the

isotropic medium

Table 4. Independent elastic coefficients and density of the
Mesaverde clay shale used in the 3-D validation tests, in
the case of a symmetry axis aligned with the vertical axis of
the grid. The elastic coefficients have to be multiplied by 109 to
obtain values in N·m−2. The density ρ is given in kg·m−3. The
other elastic coefficients are zero.

c11 c12 c13 c33 c44 ρ

66.6 19.7 39.4 39.9 10.9 2590.
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FIG. 7. Seismograms computed using the SEM for the heterogeneous numerical experiment displayed in Figures 4 and 5. The
corresponding seismograms for all receivers are shown in Figure 6. We show four traces corresponding to receivers located at
xr = −10.5 cm, −3.5 cm, −1 cm, and +10.5 cm. The vertical component of displacement obtained using the SEM is illustrated by
the solid line; that of the FD simulation is shown by the dashed line. As the two results are almost superimposed, the difference
between the two, amplified by a factor of 5, is shown by the dotted line. For all phases in the four plots, the main part of the misfit
is due to small time shifts. A description of the main phases is given in Table 3; they are also illustrated on the snapshot in Figure 4
and on the seismograms in Figure 6.

We have demonstrated that the method can also handle hetero-
geneous anisotropic models. We found good qualitative agree-
ment with published results computed using a Fourier method,
and excellent quantitative agreement with FD results. We have
finally shown that the method can deal with fully anisotropic
3-D models, by studying a transversely isotropic 3-D medium
with a tilted symmetry axis with respect to the axes of the com-
putational grid. Excellent agreement with the analytical solu-
tion on the symmetry axis was found. Future work will focus on
applying this method to more realistic structures, for instance
regions with fractured rocks.
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