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Abstract The surface displacement field along a topographical profile of an elastic
half-space subjected to the incidence of elastic waves can be computed using different
numerical methods. The method of fundamental solutions (MFS) is one of such tech-
niques in which the diffracted field is constructed by means of a representation in
terms of the Green’s functions for discrete forces located outside the domain of inter-
est. From the enforcement of boundary conditions, such forces can be computed; thus,
the ground motion can be calculated. One important advantage of MFS over boundary
integral techniques is that singularities are avoided. The computation of ground-
motion rotations implies the application of the rotational operator to the displacement
field. This can be done using either numerical derivatives or analytical expressions to
compute the rotational Green’s tensor. We validate the method using exact analytical
solutions in terms of both displacement and rotation, which are known for simple
geometries. To demonstrate the accuracy for generic geometries, we compare results
against those obtained using the spectral-element method. We compute surface rota-
tions for incoming plane waves (P, SV, and Rayleigh) near a topographical profile.
We point out the effects of topography on rotational ground motion in both frequency
and time domains.

Online Material: Analysis of the dependence of rotational motion on incident
plane-wave frequency.

Introduction

Current seismological analysis mainly deals with ampli-
fication of translational motion caused by the seismic loads,
while the rotational component of motion is still generally
overlooked. In fact, it has been the standard practice in earth-
quake engineering and seismology to focus more on trans-
lational motion, neglecting the rotational motion around
horizontal and vertical axes that occur during earthquakes.

Nevertheless, recent investigations have pointed out that
rotational motions may be relevant close to the earthquake
source (see, e.g., Takeo, 1998) and for surface waves (Lee
and Trifunac, 1985, 1987). Based on the theory of defects,
Takeo and Ito (1997) demonstrated that abrupt changes of
fault slip and/or tensile fracture can generate rotational seis-
mic waves. There are few observational evidences of how
significant rotations may be in near-source regions (see, e.g.,
Nigbor, 1994; Takeo, 1998; Huang et al., 2006). Further-
more, several studies, based partly on numerical simulations
(Bouchon and Aki, 1982; Castellani and Boffi, 1986) and
partly on finite-differencing of dense seismic arrays (see,
e.g., Niazi, 1986; Oliveira and Bolt, 1989; Singh et al., 1997;

Huang, 2003; Suryanto et al., 2006; Ghayamghamian and
Nouri, 2007; and the recent work of Spudich and Fletcher,
2008) indicated that rotational components may be non-
negligible in certain conditions. The rotational components
of ground motions have also been studied theoretically,
using, on one side, kinematic source models (Aki and Rich-
ards, 1980) and, on the other side, elastodynamics theory
of plane wave propagation (Trifunac, 1982; Lee and Trifu-
nac, 1985, 1987).

The potential implications of knowing rotational ground
motions are basically the following:

1. In seismology, they can provide useful constraints to cor-
rect the response of the seismometers, which is polluted
by rotations, even when they are expected to be very
small and therefore of negligible interest from an engi-
neering point of view. As first reviewed by Graizer (2005,
2006) and subsequently by Pillet and Virieux (2007), re-
covery of permanent displacement or long-period far-
field wave field requires an accurate estimate of rotations.
Furthermore, they might be a powerful indicator of the
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local velocity structure (e.g., the presence of an alluvial
basin as studied by Wang et al., 2006), and in near-field
regions, they might provide further constraints for the
source rupture process (Takeo and Ito, 1997).

2. From an engineering standpoint, rotations may be re-
sponsible for damage in high-rise buildings and in those
structures where soil-structure interaction effects are ex-
pected to be significant. For recent reviews of the po-
tential effects of rotational ground motions on structures,
we refer the reader to Trifunac (2006) and Kalkan and
Graizer (2007).

However, this potential impact in seismology and the
importance of rotational motion in engineering practice are
still subject to debate.

An alternative approach to assess the importance of the
rotational motion is to make use of numerical and mathe-
matical models that allow the simulation of the seismic phe-
nomena. Li et al. (2004) proposed a mathematical model
that allows the computation of time histories of rocking mo-
tion and torsional rotation corresponding to a set of three re-
corded orthogonal translational components. The proposed
model is based upon a representation of soil impedance and
the contribution of body waves.

Classical numerical formulations based on finite dif-
ferences, boundary elements, finite elements, or spectral
elements have also been widely used in the simulation of
seismic-wave propagation. Different approaches, mainly
regarding linear motion amplification, have been used to
simulate the propagation of seismic waves in the presence
of topography. In particular, the spectral-element method
(SEM) has been successfully used to simulate seismic-wave
propagation in the presence of two- and three-dimensional
(2D and 3D) topographic features (see, e.g., Komatitsch et al.,
1999; Paolucci et al., 1999). The SEM is well suited to this
problem because it is based on a variational formulation of
the seismic-wave equation and is similar to the finite-element
method. Therefore, the mesh can be adapted to the shape of
the geometry, and the free-surface boundary condition is
automatically enforced as a natural boundary condition.
Pedersen et al. (1994) used an indirect boundary element
method (BEM) formulation to calculate the 3D seismic re-
sponse of 2D topographies under the incidence of plane
waves using Green’s functions for an infinite space. Reinoso
et al. (1997) used a BEM formulation to compute 3D reflec-
tions by valleys and irregular topography. Later, Tadeu, San-
tos, and António (2001) used a direct BEM approach to
compute the 3D reflected field generated in the presence
of smooth topography, making use of the Green’s functions
for an unbounded space.

In many cases, the geometry of the problem consists of
half-spaces or layered media containing inclusions; it is then
possible to use fundamental solutions that take the layered
structure of the medium into account without having to ex-
plicitly discretize it. One such set of functions has been pro-
posed by Tadeu, António, and Godinho (2001) for the cases

of half-spaces and solid layers subjected to 2.5D loads. The
functions introduced by these authors are defined as summa-
tions of the effects of plane waves with different incidence
angles with respect to the horizontal axis.

In recent years, a different class of numerical techniques
has become popular: the so-called meshless techniques. A
few examples are the method of fundamental solutions (MFS;
Fairweather and Karageorghis, 1998; Golberg and Chen,
1999), the radial basis functions (RBF) collocation method
(Kansa, 1990), and the meshless local Petrov–Galerkin
method (Atluri, 2004). The MFS seems to be particularly ef-
fective in the study of wave propagation, overcoming some
of the mathematical complexity of the BEM, and providing
accurate solutions. Godinho et al. (2006) studied the perfor-
mance of the MFS for simulating the propagation of acoustic
waves in a fluid domain with an inclusion, concluding that
the method can be very efficient, even better in terms of
performance than the BEM for this type of problem. Later,
Godinho et al. (2007) successfully applied the MFS to study
acoustic and elastic wave propagation around thin structures
using a domain decomposition technique.

These results indicated that the MFS should be a suitable
tool to analyze the rotational motion generated in the pres-
ence of topography. We therefore develop an MFS formula-
tion to study the rotational motion caused by the incidence of
plane and surface waves in 2D geometries. First, we will pre-
sent the formulation followed by a brief description of the
half-space fundamental solutions used. We will then bench-
mark the method against known analytical solutions for spe-
cific geometrical configurations. We will also compare the
results to those provided by a classical spectral-element for-
mulation including the computation of rotations. We will
then perform a number of numerical simulations to assess
the magnitude of the rotational motion generated by the in-
cidence of plane waves with different angles of incidence and
by surface waves. The analyzed topographies include the
classic case of a semicircular valley, triangular valleys with
different slopes, elliptical canyons with different depths, and
a hill. The results are analyzed in both frequency and time
domains.

Generic Problem Formulation

Consider a homogeneous, linear isotropic elastic do-
main with mass density ρ, shear-wave velocity β, and com-
pressional wave velocity α. In the frequency domain, the
propagation of elastic waves can be described by

α2∇�∇ · u� � β2∇ × ∇ × u � �ω2u; (1)

where the vector u represents the displacement, ω is the cir-
cular frequency, and for a 3D problem, ∇ � ∂

∂x î� ∂
∂y k̂� ∂

∂z ĵ
with î, k̂, ĵ being unit vectors along the positive directions of
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the x, y, and z axes, respectively. If the problem is purely 2D,
then ∇ � ∂

∂x î� ∂
∂z ĵ.

The MFS approximates the solution in terms of a linear
combination of fundamental solutions of the governing equa-
tion. The approximate solution (û) is then given by

û �

8>><
>>:

ûx �
P

N
k�1�axkGxx�x; xk; z; zk�

� azkGzx�x; xk; z; zk�� � uincx

ûx �
P

N
k�1�axkGxz�x; xk; z; zk�

� azkGzz�x; xk; z; zk�� � uincx

; (2)

where f�xk; zk�gNk�1 are N distinct source points on a curve
that lies outside of the domain of interest, Gij�x; xk; z; zk�,
(i, j � x, z) are the displacements in the direction j at (x, z)
caused by a unit point force applied at (xk, zk) and directed
along direction i, and uincx and uincz represent either an incom-
ing plane wave or an incident field generated by a source
inside of the domain. The discrete sources in equation (2) are
located along a fictitious curve Γ0 placed outside of the do-
main in order to avoid the treatment of singularities.

Once the source points have been chosen, the coeffi-
cients faikgNk�1 can be determined by enforcing the boundary
conditions atM collocation points along the physical bound-
ary Γ. Here, the number of source points (N) on Γ0 is typi-
cally one third of the number of collocation points (M) on
boundary Γ, and the resulting equation systems are solved
using a least-squares solver.

In the present work, the propagation domain consists
of a half-space with a topographical feature at the surface
as depicted in Figure 1, illuminated by incident elastic plane
waves. The discretization of the horizontal surface of the
half-space may be avoided if fundamental solutions that take
its presence into account are used. For a half-space, the total
wave field can be expressed by taking the incident field gen-
erated by the source (source terms) and the terms generated
at the surface (surface terms) into account. The source terms
can be written based on the equations proposed by Tadeu
and Kausel (2000) for 2.5D loads, while the surface terms
can be represented by one dilatational and two shear poten-
tials with unknown amplitude values (Tadeu, António, and
Godinho, 2001).

Although these fundamental solutions are accurate and
easy to implement, they are computationally demanding with
the involved summations requiring long computational times
to reach convergence, especially when the sources or the re-
ceivers are located close to the surface of the half-space. For
this reason, it can be interesting to use alternative formu-
lations, which may result in significant improvements in
terms of performance. In fact, in the alternative approach by
Sánchez-Sesma and Rosenblueth (1979), the Green’s func-
tion for the full-space is used for all of the fictitious sources
describing the diffracted waves by the surface, while the
enforcement of boundary conditions at the surface of the
half-space is already included in the incident field. However,
modeling the geometry using only full-space solutions im-
plies that some additional sources and collocation points
have to be considered along the surface of the half-space near
the geometric discontinuity. The distance to be discretized on
each side of the discontinuity should be large enough so that
all relevant contributions from surface reflections are taken
into account and spurious wave arrivals will not interfere
with the response recorded at the receivers. In this work,
we consider a distance equal to five times the length of the
topographical feature on each side, along which the addi-
tional sources and collocation points should be placed. A
graphical representation of the model is shown in Figure 1.

The fundamental solutions to be used are thus simple
and can be written as (see Sánchez-Sesma and Campillo,
1991; Tadeu and Kausel, 2000)

Gij�x; xk; z; zk� � � i

8ρ
��A� B�δij � 2Bγiγj�;

with A � H�2�
0 �kαr�
α2

�H�2�
0 �kβr�
β2

; kα � ω
α
;

and kβ � ω
β
; B � H�2�

2 �kαr�
α2

�H�2�
2 �kβr�
β2

;

γi � ∂r=∂xi; γj � ∂r=∂xj;

(3)

where r �
��������������������������������������������
�x � x0�2 � �y � y0�2

p
([x0, y0] being the posi-

tion of the source).
The rotational motion can be computed by analytically

calculating the necessary derivatives of these functions to ob-
tain θy � � 1

2
�∂ûx∂z � ∂ûz∂x �. Applying this operator to the afore-

mentioned defined fundamental solutions, the rotational field
can be expressed as

θy �
i

8μ
kβH

�2�
1 �kβr��γjϕi � γiϕj�; (4)

where ϕiis the ith component of the applied unit force.
As for the incident field, different types of waves may be

taken into account. Defining the apparent horizontal wave
velocity, c, and the wavenumbers l � ω

c, m �
������������������
ω
α

� �
2 � l2

q
,

Figure 1. Geometry of the problem with the location of the
sources and collocation points.
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and k �
��������������������
ω
β

� �
2 � l2

r
for the case of incident P and SV

waves, the wave field generated in the presence of a half-
space can be written as a function of one dilatational (ϕ1)
and one shear (ψ1) potential,

ϕ1 � �A1e
imz � A2e

�imz�e�iIx;
ψ1 � �B1e

ikz � B2e
�ikz�e�iIx;

(5)

in which A1 and B1 represent the amplitude of the incident P
and SV waves, respectively, and A2 and B2 are unknown
coefficients to be determined by enforcing the fact that
the traction vector vanishes along the free surface. The rota-
tional motion generated at the surface of an elastic half-space
can then be written as

θ�0�y � � 1

2
�k2 � l2�ψ1: (6)

Model Verification

The previously defined MFS model was first applied to a
number of test cases, comparing the results it provides with
those computed by applying other techniques. In what fol-
lows, we present a number of results from those tests.

Verification against Analytical Solutions—The Case
of a Wedge

When the geometric configuration of the topographical
profile is that of a wedge with an internal angle of 120°
(Fig. 2a), and the propagation medium has a Poisson ratio
ν � 0:25, it becomes possible to analytically calculate the
solution for the displacement field when the system is illu-
minated by an incident SV-plane wave with an incident angle
γ � 0° as shown by Sánchez-Sesma (1990). For this case,
adequately differentiating the displacements, the rotational
motion can be obtained as

θy � �u0ke�ikh sin�k�z� h��; (7)

where u0 is the incident displacement field, and h is the depth
of the wedge structure as identified in Figure 2a.

We analyzed this geometry using the MFS model with a
number of collocation points ranging from 5 to 20 per wave-
length. Observation of the results allowed us to conclude that
they approach the analytical solution as a higher number of
points is considered. However, very small differences were
found between the results above 15 points per wavelength.
Thus, the presented results are computed using 15 colloca-
tion points per wavelength for the different frequencies of the
incident wave. Figure 2b shows the corresponding results
(numerical and analytical) for the dimensionless frequency
η � ωa

βπ, where a is half the width of the irregularity. The pre-

sented displacements are normalized with respect to the in-
cident field u0, while the normalized rotations are obtained as
θya
u0η

. Observing these results, we conclude that the MFS pro-
vides a very accurate estimation of both the displacements
and the rotation.

Benchmarks for Generic Geometries

To ensure that reliable results are obtained, we bench-
mark the proposed MFS against an SEM for a few simple
geometrical configurations. As previously mentioned, the
spectral-element method is an independent numerical tech-
nique similar to the finite-element method that has been
extensively validated and used to study 2D and 3D seismic-
wave propagation problems in recent years (see, e.g., Koma-
titsch et al., 2005 for a review and references therein).

By running this method, we obtain two seismograms
composed of seismic traces in the time domain for the two
components of the 2D displacement vector. We perform a
Fourier transform of each trace to measure spectral amplitude
at a given normalized frequency η, and then the SEM results
can be compared with the MFS results, which are obtained in
the frequency domain. To introduce initial plane waves in the
SEM mesh, the displacement field is split into an incident
field in a half-space and a diffracted field resulting from the
presence of topography at the free surface of the half-space.
The incident field in the half-space is analytically known;

Figure 2. (a) Geometry of the topography used in the verifica-
tion. (b) Normalized displacements and rotations at the surface.
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therefore, its exact expression is implemented in the SEM
code, whereas the diffracted field is numerically computed
by the SEM. To simulate a semi-infinite half-space, absorbing
conditions are implemented on all of the boundaries of the
mesh except the free surface based on the method of Bielak
and Christiano (1984), in which the known initial field is
subtracted on the boundary during propagation; then, one
only needs to absorb the diffracted wave field.

The first set of results corresponds to the case of a semi-
circular canyon, as depicted in Figure 3, subjected to a plane
P or SV wave with a 60° incidence angle. Both translational
(along the x and z axes) and rotational motions are computed.
Figures 4 and 5 present the results computed along a line of
receivers located exactly at the surface when the incident
wave field has a normalized frequency η � 1. The medium
has a Poisson ratio of 0.25. The SEM calculation is performed
on a mesh of 4000 spectral elements with five Gauss–
Lobatto–Legendre points in each direction of each element.
Therefore, we have a total of 64,681 unique grid points
in the global mesh. We take a timestep Δt � 0:001 sec in
the explicit and conditionally stable time-evolution scheme;
therefore, for the mesh of Figure 3, we experimentally mea-
sure a Courant–Friedrichs–Lewy (CFL) stability number
αΔt=Δx � 0:255 (the upper limit found by trial and error
is around 0.45). We let the calculation run for a total duration
of 12 sec.

The SEM and MFS results are in good agreement, which
indicates a good behavior of the MFS for the analyzed
problem.

Let us perform a second benchmark for another topo-
graphic profile, the Gaussian-shaped hill represented in Fig-
ure 6. We study the response of that hill under the incidence
of a Rayleigh wave based on both the MFS and the SEM.
Figure 7 shows the results computed along a line of receivers
located exactly at the free surface. The SEM calculation is
performed on a mesh of 4000 deformed quadrangles adapted
to the shape of the hill. Each quadrangle is defined by nine
control points in order to have curved boundaries that
can better fit the topography. We use five Gauss–Lobatto–
Legendre points in each direction for each element; there-

fore, we have a total of 64,561 unique grid points in the
mesh. We take a timestep Δt � 0:04 sec, that is, a CFL sta-
bility number of 0.223. We let the calculation run for a total
duration of 12 sec.

In Figure 7a, results obtained for a specific normalized
frequency of η � 1:0 are displayed, showing a good agree-
ment, although small differences are observed between the
two curves. To make sure that these differences are not sig-
nificant, synthetic seismograms have also been computed
considering an incident Rayleigh wave defined by a Ricker
pulse with a characteristic period T � 4 and a delay of 6. A
normalized time scale is used, with the normalized time
being given by �t � t × β

a, where a is half of the width of
the irregularity and β is the S-wave velocity. The results pre-

Figure 3. Mesh used in the spectral-element method to describe
the geometry of the canyon model.

Figure 4. Comparison between the spectral amplitude com-
puted based on the SEM and based on the MFS for the rotational,
horizontal, and vertical components of displacement in the case of a
P wave with an incidence angle of 60°.

Figure 5. Comparison between the spectral amplitude com-
puted based on the SEM and based on the MFS for the rotational,
horizontal, and vertical components of displacement in the case of
an SV wave with an incidence angle of 60°.
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sented in Figure 7b show that there is an excellent agreement
between the seismograms computed by both methods.

Influence of Surface Topography
on the Rotational Motion

Although earthquake-induced translational ground mo-
tions have been widely studied, the knowledge on the cor-
responding rotational components and on their possible
dependence on topographical irregularity is still very limited.
In this section, a number of 2D typical topographical config-
urations, subject to the incidence of different wave types, is
analyzed using the proposed MFS method.

To ensure that comparable results are obtained between
all of the presented cases, the problem is normalized with
respect to half of the horizontal dimension of the irregularity
(a); a constant Poisson ratio ν � 0:25 is assumed throughout
this section. For this reason, results in the frequency domain
are shown as a function of the dimensionless frequency η �
ω
β
a
π. As a reference, the results for an elastic half-space were

first calculated for η � 1 and are presented in Figure 8a,b for
incident P and SV waves with different incidence angles, re-
spectively. For both cases, the figures display the displace-
ments normalized with respect to the incident field and the
normalized rotations given by θya

u0η
. As expected, when the

incident wave is a P wave, the maximum vertical displace-
ment is recorded for an incidence angle of 0°, while zero
displacement is recorded for 90° incidence. Globally, these
results seem to be consistent with those presented by Trifu-
nac (1982). When the incident field is given by SV waves,
the response is significantly different, but the displacements
in both vertical and horizontal directions still follow the
results presented by Trifunac. The rotations generated at
the surface vary somewhat differently, reaching maximum
values for different incidence angles γ. Although a system-
atic correlation between translational and rotation ground
motions is not found, vertical displacements and rotations
show similar patterns.

When a surface irregularity is introduced (see Fig. 9),
the generated wave field becomes more complicated. Fig-
ure 10 depicts some representative results for the case of a
semicircular canyon (defined by the geometry displayed in
Fig. 9 with a � 1 m and d � 1 m) under the incidence of
both P and SV waves. For simplicity, only the case of a
normalized frequency η � 1 will be discussed herein. In all
cases, the geometries have been described using a number of
collocation points at the surface, large enough to ensure a
minimum of 15 points per wavelength λ.

It is worth noticing that marked discontinuities occur at
the edges of the canyon. Although these discontinuities are
more visible in the rotational response, they can also be seen
in the vertical and horizontal displacements; they may be
associated with the sharp edge that exists at this point. For
lower inclinations of the incident plane wave, peak values of
the rotation are recorded near this edge as can be seen in

Figure 7. Verification results for the case of an incident Ray-
leigh wave: (a) comparison between the spectral amplitude com-
puted using the SEM and the MFS for the rotational, horizontal,
and vertical components of displacement and (b) comparison of
synthetic seismograms for rotational motion, computed by the
SEM and MFS at 17 stations located along the surface.

Figure 6. Mesh used in the spectral-element method to describe
the geometry of the hill model.

1152 L. Godinho, P. Amado Mendes, A. Tadeu, A. Cadena-Isaza, C. Smerzini, F. J. Sánchez-Sesma, R. Madec, and D. Komatitsch



Figure 10a,b for incident P and SV waves parallel to the sur-
face. However, as γ approaches larger values, high amplifi-
cations are recorded at the central part of the irregularity,
reaching normalized rotations of amplitude 9 for SV waves
with γ � 60°. Comparing the incidence of P and SV waves,
it can be seen that the rotational motion generated by the
latter are much larger, as intuitively expected by simple the-
oretical considerations (e.g., Cochard et al., 2006).

Although no results are presented for other frequencies,
a systematic study has been conducted analyzing the relation
of both displacements and rotations with frequency. In this
analysis (Ⓔsee the electronic edition of BSSA), it was found
that, as a general tendency, a similar behavior is obtained, but
the responses tend to exhibit a more pronounced oscillatory
behavior; the influence of the topographical feature is further
enhanced with respect to the case η � 1.

It is important to note that, although all results for rota-
tional motion in Figure 10 are presented as normalized rota-

tions, these results can be easily related to relevant physical
quantities and may be used to predict rotational motion am-
plifications for more specific conditions. Consider, for in-
stance, that the incident wave is generated in the context by
anMw 6 earthquake generated by a fault rupture at a depth of
4 km and that the propagation medium at the surface has an
S-wave velocity of 1000 m=sec. Using the well-known at-
tenuation law proposed by Joyner and Boore (1993), it is
possible to assess the particle velocity for such incoming
waves by means of

log10�v� � 2:150� 0:461 × �Mw � 6� � log10
� �����������������

R2 � 42
p �

� 0:00256 ×
� �����������������

R2 � 42
p �

� 0:167; (8)

where R is the distance from the station to the projection
of the fault rupture surface on the earth surface and Mw is
the moment magnitude. Using this expression, we can con-
clude that this earthquake would generate velocities around
18 cm=sec at R � 10 km and 0:57 cm=sec for R � 150 km.
Because the normalized rotation can be written as θyβπ

v0
, a

unit normalized rotation implies a rotational motion of 0:6 ×
10�4 rad in the first case and of 1:8 × 10�6 rad in the sec-
ond. From the amplifications displayed in Figure 10c for
an incoming SV wave, it is possible to establish that the
peak rotational motions predicted for the epicentral region
would be of about 5:4 × 10�4 rad. This value is large enough
to induce significant structural damage and even failure.
However, the precise understanding of the rotational struc-
tural vulnerability contributing factors (damping, ductility,
dominant period, etc.) will require more data and further
scrutiny.

To give insight into the physics behind the performed
simulations, time domain results are also computed. To this
end, the synthetic seismograms have been computed from
the corresponding transfer functions calculated for N � 128

frequencies by means of an inverse Fourier transform, as-
suming that the incident wave corresponds to a Ricker pulse

Figure 9. Geometry of the elliptical canyon.

Figure 8. Results for an elastic half-space under the incidence
of (a) P waves and (b) SV waves.
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with a characteristic period T � 2 and a delay of 6. Time
signals are displayed in Figure 11 in terms of horizontal dis-
placement (left), vertical displacement (center), and rotation
(right) using a normalized time scale such that �t � t × β

a. Ob-
serving this figure, it is possible to confirm that no rotations
are generated by an incident P wave; thus, these rotational
effects can only be observed once the incident pulse im-
pinges upon the surface. Globally, the rotational ground re-
sponse at the surface exhibits similar patterns to those of the
displacement field. However, under the incidence of SV
waves, rotational ground motions seem to be more signifi-
cant, which is consistent with what is observed in the fre-
quency domain.

The relative depth of the canyon can also have signifi-
cant effects on the surface ground response. To assess its im-
portance, parametric analyses with respect to the parameter d
have been carried out. In Figure 12, results for incident SV
waves at 30° and 60° are shown for elliptical canyons with
d � 0:25, 0.5, and 0.75 m. The response for d � 0:25 m
appears more regular with flatter curves describing the dis-
placement field at the surface points. However, a marked am-
plification in the rotational response is still recorded at the
edge of the irregularity located at x � 1:0 m when the inci-
dence angle is 60°. Observing the results for the other two
geometries, it can be seen that, in fact, at this point a marked
amplification is always recorded; this is the region where

Figure 10. Results for a semicircular canyon (d � 1 m): incidence at (a) 0°, (b) 30°, and (c) 60°.
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peak values occur. By contrast, in all cases, rotations around
x � 0:5 m are minimum. As a general trend, amplification of
surface ground motions tends to occur in the ascending
part of the canyon (x > 0 m), while deamplification can
be observed in the descending part (x < 0 m). It is possi-
ble to observe that, globally, as larger values of d are con-
sidered, larger amplifications occur. Interestingly, for all

cases, the amplification of the rotational field is more pro-
nounced than that of the translational field. However, there
seems to be a limit for this amplification, which is generally
not exceeded in the normalized rotational response. In fact,
although marked amplifications have been identified in Fig-
ures 10 and 12, the normalized rotation is generally lower
than 2π. Because the presented results are normalized with

Figure 11. Normalized time signals for a semicircular canyon (d � 1 m) under the incidence of (a) P wave at 0°, (b) P wave at 60°,
(c) SV wave at 0°, and (d) SV wave at 60°.
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respect to the incident displacement field and to the dimen-
sionless frequency, the rotational motion should follow the
relation

θy ≤ 2πu0η � 2u0
ω a

β
: (9)

Analyzing the previous equation, we believe that, in
general, the rotations scale with the ground velocity and
should be bounded by the upper limit _ug=β. However, local-
ized amplification due to diffraction effects may generate
local peaks as can be seen in Figure 10c for the incidence
of SV waves at 60°.

After acquiring confidence with rotational ground mo-
tions induced by smooth topographies, the influence of sharp

geometric irregularities is investigated. In fact, it is known
that the presence of sharp edges significantly influences the
propagation of seismic waves; thus, it may influence both the
displacements and the rotations recorded at the surface. For
this purpose, a number of simulations was performed for tri-
angular canyons with varying depths (see Fig. 13). Figure 14
displays the results computed for two different values of the
canyon depth when the incidence of SV waves occurs at 0°,
30°, and 60°.

As expected, the amplification of both displacements
and rotations decreases as lower depths are considered; the
displacements’ and rotations’ curves have a smoother trend.
For 0° incidence, the recorded response is symmetric, and
peak amplifications are visible after the transition from the

Figure 12. Results for the elliptical canyon with different depths: (a) d � 0:25 m, (b) d � 0:50 m, and (c) d � 0:75 m.
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half-space to the canyon. As higher incidence angles are con-
sidered, the response becomes more complex, and, as in the
previous examples, an amplified rotational response is visi-
ble in the ascending part of the topographic feature (between
x � 0:0 m and x � 1:0 m). Interestingly, the displacement
field in this region exhibits very little amplification, indicat-
ing that the rotational effects are stronger than the transla-
tional ones. Again, it is worth noting that the normalized
rotations do not exceed 2π, following the relation defined
in equation (9).

A particular case of seismic-wave incidence occurs
when Rayleigh waves are generated because these waves
have an important rotational component themselves. The in-

Figure 13. Geometry of the triangular canyon.

Figure 14. Results for triangular canyons under the incidence of an SV wave: incidence at (a) 0°, (b) 30°, and (c) 60°.
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cidence of Rayleigh waves has also been simulated; the re-
sults computed for elliptical and for triangular canyons with
different depths are displayed in Figure 15.

The results obtained for this type of incidence reveal
similar behaviors for the two geometries with the canyon at-
tenuating both the rotational and the translational response.
Indeed, both cases register responses close to those of the
half-space (Fig. 16) before the canyon (x ≤ 1:0 m), and then
a progressive decrease occurs as the receiver points are
placed further away from the source region. Once again,
the relation defined by equation (9) seems to be generally
followed with the exception of very localized amplifications
occurring near the edge of the elliptical canyon.

It is interesting to note that the energy of the displace-
ment and rotation field smoothly decreases when the canyon
has rounded geometry, while a steep decrease is visible right
after the edge of the triangular canyon. This behavior indi-
cates a very strong diffraction effect that may be occurring at
the edge of the triangular canyon, which helps to spread the
energy of the propagating wave throughout the propagation
domain.

The previously described behaviors can be further con-
firmed in the time domain plots presented in Figure 17, com-
puted for an incident Rayleigh wave defined by a Ricker
pulse with a characteristic period T � 4 and a delay of 6.

In this figure, the time responses generated by the incidence
of a Rayleigh wave in the presence of elliptical canyons with
d � 1:0 m and with d � 0:5 m are displayed, together with
the response generated in the presence of a triangular canyon

Figure 15. Results for different canyon geometries under the incidence of a Rayleigh wave: (a) d � 1:0 m and (b) d � 0:5 m.

Figure 16. Displacements and rotations for a half-space under
the incidence of a Rayleigh wave.

1158 L. Godinho, P. Amado Mendes, A. Tadeu, A. Cadena-Isaza, C. Smerzini, F. J. Sánchez-Sesma, R. Madec, and D. Komatitsch



with d � 1:0 m. It is apparent that there is a smoother varia-
tion in the amplitude when the canyon has a smoother shape
with the energy being slowly transferred to the propagation
domain along the curve defining the canyon. It is possible to
observe that the rotational motion follows a pattern similar to
that of the displacements with the shield effect of the canyon
being clearly visible in the upper half of these plots. It is also
clear that the vertex in the triangular canyon has a very strong
effect in the response, which is even more evident in the ro-
tational field. For this case, the position of the vertex can be
easily identified from the marked deamplification occurring
at this specific point.

Conclusions

In this article, we evaluated the rotational ground motion
at the surface of a 2D half-space with a topographical profile
using an MFS method, which was verified using both analyti-

cal solutions known for wedges with specific internal angles
and the SEM, which is applicable to arbitrary geometries. The
method provided stable and accurate results and proved to be
adequate for the study of rotational motion.

We then analyzed different topographical features,
namely, elliptical and triangular canyons of varying depths
under the incidence of P, SV, and Rayleigh waves. For
all cases, significant amplifications were found in both the
rotational and the translational fields. As inferred from previ-
ous theoretical studies, a comparative analysis revealed that
larger amplifications of the rotational motion at the surface
are generated by SV and Rayleigh waves. The computed
results confirmed that the shape and depth of the canyon
are important variables that influence the level of amplifica-
tion and deamplification recorded at the surface. The shield
effect of canyons for displacements under oblique incidence
of plane waves and Rayleigh surface waves is also clearly
identifiable for rotations. For all cases, time responses reveal

Figure 17. Normalized time domain responses along the surface of canyons with different geometries under the incidence of a Rayleigh
wave: (a) horizontal displacement, (b) vertical displacement, and (c) rotation.
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a very strong contribution of SV and Rayleigh waves, which
are a dominant factor for the rotational motion.

From the various cases studied in this work, we believe
that rotational ground motion should be generally bounded
by the expected (or nominal) ground velocity divided by
the shear-wave propagation velocity. As a general guideline,
ground rotations scale with ground-motion velocities; how-
ever, diffraction may induce significant localized variations.
More specific guidelines will emerge after the analysis of real
data using more powerful methods that consider realistic
models of surface geology.
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