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SUMMARY 
Many situations of practical interest involving seismic wave modelling require curved 
interfaces and free-surface topography to be taken into account. Collocation methods, 
for instance pseudospectral or finite-difference algorithms, are attractive approaches 
for modelling wave propagation through these complex realistic models, particularly 
in view of their ease of implementation. Nonetheless, these methods formulated in 
Cartesian coordinates are not well suited to such models because the sharp interfaces 
and free surface do not coincide with grid lines. This leads to a slow convergence rate, 
resulting in visible artefacts such as diffractions from staircase discretizations of 
interfaces and the free surface. Such problems can be overcome through the use of 
curved grids whose lines follow sharp interfaces and whose density increases in the 
vicinity of these interfaces. One approach is to solve the wave equation in Cartesian 
coordinates by using the chain rule to express the Cartesian partial derivatives in terms 
of derivatives computed in the new coordinate system. However, it is more natural to 
solve the tensorial form of the wave equation directly in the desired curvilinear 
coordinate system, making use of a transformation of a square grid onto the curved 
grid. The tensorial approach, which is independent of the coordinate system, requires 
the same number of derivatives to be computed as in the Cartesian case, whereas the 
chain rule approach requires 25 per cent more in 2-D and 50 per cent more in 3-D. 
While the tensorial approach is less computationally expensive than the chain rule 
method, it requires more memory. Numerical tests validate the tensorial approach by 
comparing the results with the analytical solution of the tilted Lamb problem. Other 
numerical experiments demonstrate the ability of the tensorial formulation to model 
wave propagation in the presence of free-surface topography. Mode conversions 
between Rayleigh and body waves are observed when bumps on the free surface are 
encountered. 
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INTRODUCTION 

In many situations, it is important to simulate wave propagation 
in models containing curved interfaces and/or free-surface 
topography. In such cases, the use of classical collocation 
methods (i.e. Cartesian grid methods) has the drawback of 
poor convergence rates, as evidenced by visible artefacts such 
as diffractions from the staircase discretization of the interfaces 
and free surface. In the case of curved interfaces within the 
model, such artefacts can be reduced by careful discretization 
procedures that involve 'interpolation' of the model onto the 
Cartesian grid (e.g. Muir et al. 1992) albeit with convergence 
limitations imposed by the uniform discretization. However, 
for the case of a free surface with topography, there seems to 

be no easy way to implement the appropriate discrete boundary 
conditions correctly. 

An approach to overcome these problems, initially intro- 
duced by Fornberg (1988) and later developed by many 
authors (Tessmer, Kosloff & Behle 1992; Carcione 1994; 
Nielsen et al. 1994; Hestholm & Ruud 1994; Tessmer & Kosloff 
1994), is to solve the wave equation on a curved grid whose 
lines coincide with the interfaces. This is achieved by solving 
the wave equation written in Cartesian coordinates and 
involves first computing the spatial derivatives in the new 
coordinate system (curved grid) and then applying the chain 
rule to calculate the required Cartesian spatial derivatives. 
This method allows curved interfaces to be modelled but has 
the major drawback of being computationally more expensive 
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than the Cartesian method because more derivatives must be 
computed. 

A more natural approach, which overcomes this drawback, 
is to solve the wave equation on the curved grid directly. This 
necessitates the wave equation to be written in its tensorial 
form, which is independent of the coordinate system. A grid 
transformation maps the curved grid, whose lines coincide 
with sharp interfaces and/or the free surface, onto a square 
computational grid. This enables the metric tensor, which is 
needed to solve the tensorial wave equation, to be computed 
at any point in the medium. The solution to the tensorial wave 
equation involves the computation of exactly the same number 
of derivatives as in the Cartesian case. 

The grid generation process ensures that the grid lines lie 
on the different interfaces, so that the 'non-physical' diffractions 
from the staircase discretization in Cartesian grids are not 
present. Local grid refinement in the vicinity of the interfaces 
(in particular the free surface) allows the convergence rate to 
be improved relative to Cartesian methods. Complex domains 
can also be discretized using grids that are orthogonal at every 
point in space. This leads to a reduction in the memory 
requirements of the tensorial approach (the off-diagonal com- 
ponents of the metric tensor being equal to zero) but, as 
underlined by Thompson, Warsi & Mastin (1985) and Nielsen 
& Skovgaard (1990), orthogonality is not the key requirement 
for a small computational error. A much more important 
factor is the smoothness of the variations in the size of the 
grid cells, which is ensured by the grid generation process (see 
Appendix B). 

TENSORIAL FORMULATION OF THE 
WAVE EQUATION 

The tensorial wave equation 

The wave equation is most frequently written using Cartesian 
coordinates. However, the introduction of a particular coordinate 
system is not necessary provided a 'metric' can be defined. In 
this case, a set of equations describing elastic wave propagation 
in heterogeneous media can be written that is valid at any 
point in space independently of the particular choice of 
coordinates. This choice merely specifies the components of 
the metric tensor gij but the equations themselves remain 
unchanged. For the case of an isotropic medium and assuming 
infinitesimal strains, the general expression of these tensorial 
equations (see also McConnell 1957; Brillouin 1964) is the 
equation for the conservation of linear momentum 

a Z u i  
P,,, = Vj0 , j  + qJi ,  

the strain-displacement relation (under the infinitesimal strain 
approximation) 

(2) 
1 
2 

Eij=-(ViUj+VjUi), 

and the isotropic stress-strain relation, or Hooke's law, 

o,j = ngijE; + 2 p 4 ,  (3) 

where the covariant derivative Vm of a tensor . I j , . ,kf- .  has the 
general expression 

v T .  kl  ...= a T.. kl  ... 
m I,. .. m I J  ... 

- r m ~ ~ j , . , k l . . .  - r mJ s . l ; s . , . k l -  - ... 

+ rm:7;j...s1- + r,,,;Tj,.,ks- + ... . (4) 
For the purpose of numerical computations, we rewrite the 
wave equation in velocity-stress formulation (Virieux 1986). 
In 2-D, the linear momentum conservation is then 

av 
P A  at = V,o,r + V , o , ~  + q, 

av 
P--1=V,a,5+V,,a;+q* a t  

= + aso; + ri;gca,r + r5:o; - r,,,%t 
- r,:q + v,,; ( 5 )  

the isotropic stress-strain relation is 

6 , ~  = (n  + 2 p ) i ~  + ai; , 

6,'l = id,< + (1 + 2p)C," 

6,O = 2pi,9, 

u,< = 2piq< ; ( 6 )  

i,, = vrvr = arvs - rr;vr - r,rl)v,, 

i,,,, = v,~,, = a,v, - r,,;v, - r,,;v,, , 

the strain-velocity relation is 

and the strain tensor transformation between covariant and 
mixed formulation is 

g,c = grs€<, + g"i,, , 
iq,, = 5 7 .  g EQ< + gqq'gII,,> 

&<S = grq&<< + gq"<,,, 

g,' = r5  . g Es5 + g ~ ~ ~ q q .  (8) 
In the above set of equations, 5 and q are the curvilinear 
coordinates, 1 and p are the Lam6 parameters of the elastic 
medium, p is the density, vi denotes the covariant components 
of the velocity vector, vi is the covariant source term, E~~ is the 
covariant strain tensor, E( is the mixed strain tensor (i.e. one 
covariant and one contravariant index) and o? is the mixed 
stress tensor. A dot over a tensor denotes time differentiation. 
rijk is the affine connection (Christoffel symbols of the second 
kind), which can be derived from the metric tensor using 

(9) 
1 rijk = , p ( a i g j m  + ajgi, - amgi j ) .  

Note that we use Einstein's summation convention of implicit 
summation over an index repeated as a subscript and a 
superscript. The symbols V, and V, stand for the so-called 
covariant derivative, which is equal to the partial derivative 
plus a sum of the components of the field itself multiplied by 
the Christoffel symbols. Information about the coordinate 
system is contained in the metric, with gij denoting the metric 
tensor in covariant components and g'j the metric tensor 
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in contravariant components. Appendix A provides a brief 
review of the essential rules of covariant and contravariant 
formulations of tensors. 

Assuming it is possible to define a coordinate system that 
matches naturally onto the physical space (i.e. one in which 
given axis ordinates coincide with geological interfaces and 
surfaces), the above set of equations can be applied to solve 
the wave equation directly in this ‘geological’ coordinate 
system. This corresponds to solving the wave equation in a 
square computational grid (t, q)  E [- 1, 11 x [- 1, 13 that 
maps onto the physical space (x,z) through a given trans- 
formation. In contrast to the chain rule method, where the 
wave equation in a Cartesian coordinate system (i.e. written 
in terms of velocity components u, and u, and stress com- 
ponents ox,, CT,, and nXz for the 2-D case) is solved using 
spatial derivatives calculated in the curvilinear domain, the 
tensorial method directly solves the wave equation in the 
curvilinear domain (i.e. the equation written in terms of velocity 
components uy and u,, and stress components oyC, C T , , ~  and CT~,,) 
using spatial derivatives calculated in the same curvilinear 
domain. 

Computational cost 

While the tensorial approach is more philosophically satisfying 
than the chain rule approach because the equations are 
written in the same curvilinear coordinate system as where 
computations are performed, the relative costs of the two 
approaches have to be analysed under similar assumptions. 
A cost comparison between methods is difficult due to a multi- 
tude of possible implementations. In the following indicative 
analysis, relatively similar implementations are assumed in 
which time-independent coefficients are stored rather than 
recomputed at every time step (e.g. ri; in the case of the 
tensorial approach and at,/ax, in the case of the chain 
rule method). 

The computational cost of a numerical approach to solve 
the wave equation directly depends mainly on the number of 
spatial derivatives required by the method, denoted by na 
(assuming a precise discrete derivative operator is used- 
for example a pseudospectral operator or a finite-difference 
operator of length 24). Consequently, we will use the number 
of spatial derivatives required by an approach as an indicative 
measure of the computational cost, i.e. 

Computational cost - constant x na(N),  (10) 
where N denotes the number of spatial dimensions. 

For the tensorial formulation, the number of spatial derivatives 
required to compute the divergence of the stress is N2,  and the 
number required to calculate the strain from the displacement 
is also N 2 ,  giving a total of 

a (11) - 2N2 

discrete spatial derivative computations. This is identical to 
the number of spatial derivatives required by the Cartesian 
approach, which is a special case of the tensorial approach 
with gij  = 6, = constant, simply meaning that all the Christoffel 
symbols equal zero. 

The chain rule approach calculates the Cartesian derivatives 
in terms of the derivatives in the computational domain as 

xiensorial - 

where 5, denotes the coordinates in the computational domain 
and f the field being differentiated. The divergence of stress is 
therefore calculated as 

doij aaij at,  
axj at, a x j ’  - 

which involves the computation of N 2  x ( N  + 1)/2 independent 
spatial derivatives. In the case of the strain calculation using 
the chain rule, the most efficient way in terms of computational 
cost is to compute and store the N 2  spatial derivatives aui/a[, 
and subsequently apply eq. (12). Consequently, the total 
number of discrete derivatives that must be computed in the 
chain rule approach is 

Therefore, the additional cost of the 
relative to the tensorial approach is 

- ~ - _  Cost chain rule nghain 

Cost tensorial n y ’  - 

(14) 

chain rule approach 

25percent, N = 2 ,  

50 per cent, N = 3.  

(15) 

If only the horizontal lines were curved, while keeping purely 
vertical grid lines, as is often done in the chain rule method to 
reduce the cost when curved grids are generated for smooth 
enough topographies, the additional cost of the chain rule 
relative to the tensorial approach would be of 112.5 per cent 
in 2-D and 122.2 per cent in 3-D, due to the fact that some of 
the i3t,,,/axi would then be equal to zero. 

While the tensorial formulation requires a computational 
effort similar to the Cartesian case, additional memory is 
required to store the metric g’j and connection Ti;. Recalling 
that the metric tensor is symmetric and that the connection is 
symmetric in the lower indices, the memory requirement is 
N ( N  + 1)/2 fields for the metric and N 2 ( N  + 1)/2 fields for the 
connection. This requirement applies to the general case when 
g’j has no zero components. We denote the extra memory 
requirement of the tensorial approach to store the metric and 
connection by 

AMtensorial - N ( N  + 1)’ - 
2 .  

Similarly, the chain rule approach requires additional memory 
relative to the Cartesian case to store the N 2  fields a t , / a x i ,  so 

N 2 .  (17) AMchain = 

This is less than the additional memory required by the 
tensorial method, the difference between the two approaches 
being 

AMtensorial - AMchain - - 
2 

Because the total number of arrays needed to store all 
components of displacement, velocity, acceleration, stress and 
strain, in addition to the medium properties, is of the order of 
15 in 2-D and 25 in 3-D, it can be seen that the addi- 
tional memory cost of the tensorial formulation is important, 
particularly in 3-D, and constitutes the main drawback to 
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the use of this approach. This cost would not be reduced if 
only horizontal curved grid lines were used (keeping purely 
vertical grid lines) because no components of the metric tensor 
would vanish, as can be seen in its expression in terms of the 
partial derivatives of the grid transformation functions (see 
Appendix A). The way to save memory could be to use 
orthogonal grids for which the off-diagonal terms of the metric 
tensor equal zero, but such grids are difficult to generate, 
particularly in 3-D (Ryskin & Leal 1983). 

GRID GENERATION, METRIC A N D  
CONNECTION CALCULATION 

Consider a geological model specified as a set of points defining 
curved interfaces between layers and a curved free surface. 
In Appendix B, using an interpolation algorithm based on 
the third-degree Hermite polynomials, we describe a simple 
approach to generate a grid whose 'horizontal' lines follow the 
interfaces, and whose 'vertical' lines have given tangent vectors 
to the interfaces, as illustrated in Fig. 1. 

It is then possible to define an analytic transformation function 
from a square computational domain ({, q )  to the physical 
space r'= (x, z), and hence the coordinate transformation 
functions x = x({, q) and z = z({ ,  q) .  

To obtain a high precision for the numerical boundary 
conditions at interfaces and the free surface, it is frequently 
necessary to refine the grid in the vicinity of these interfaces 
(Jastram & Behle 1992; Rodrigues & Mora 1992). The grid 
generation approach used has the useful property that the grid 
can be refined or stretched close to the boundaries of a layer, 
hence allowing an increase in the number of grid points close 
to the interfaces and the free surface, and a decrease in the 
number of grid points close to an absorbing boundary. 

With a knowledge of the transformation functions x = x(& 4) 
and z = z(5, q)  from the computational domain to the physical 
space, the basis vectors of the natural frame associated with a 
point whose position is A are given by 

with xj E {x, z> and 5' E {{, q } ,  Z,! being the basis vectors of 

Figure 1. The grid generation process seeks a curve linking points A 
and B with known tangent vectors TA and TB. These tangent vectors 
can, for instance, correspond to the normals at positions A and B of 
two curved interfaces denoted C A  and Cs which bound a given layer. 

a Cartesian orthonormal frame. This means that the metric 
tensor in a Euclidian space (i.e. flat space) is given by 

as ZL * e;' = 6kl in the Cartesian orthonormal frame. 
This expression allows gij and gij to be calculated in terms 

of the partial derivatives of the transformation functions (see 
also Appendix A). As the functions xi = xi({, q)  are known 
analytically, it would be possible to calculate the metric tensor 
gij using the analytic expressions for the partial derivatives 
of the transformation functions. The metric tensor can also 
be calculated numerically using the same discrete spatial 
derivative operator as the one used to solve the wave equation 
(in our case a Chebyshev operator). Although it may seem 
surprising, the work of Thompson et al. (1985) has shown that 
the second approach leads to a lower global numerical error 
when calculating spatial derivatives in the curved domain. For 
this reason, we have chosen to compute the metric tensor 
using the numerical approach. The same discrete derivative 
operators are subsequently applied to the components of gij 
to obtain the Christoffel symbols using eq. (9). 

NUMERICAL ALGORITHM 

We use a Chebyshev operator (see for instance Carcione 1994) 
to solve the tensorial wave equation. The variables are 
discretized on a grid defined on [--1,1] x [-1,1] by the 
Gauss-Lobatto-Chebyshev points. The fields are expanded in 
terms of a finite sequence of orthogonal functions which are 
the Chebyshev polynomials. Time extrapolation is performed 
using an explicit fourth-order Runge-Kutta scheme, which 
gives a favourable stability condition for dt  = O ( N - ' ) ,  where 
N is the number of grid points in each direction of the 
computational grid. The Chebyshev algorithm has been chosen 
mainly because it is free of numerical dispersion up to the 
Nyquist frequency, and also because boundary conditions, for 
instance the free-surface condition, can be implemented in a 
straightforward and efficient way. Because the purpose of 
this paper is mainly to introduce and validate the tensorial 
formulation of the wave equation, we do not present the 
Chebyshev algorithm in detail here. The reader can refer to 
the very precise description given in Carcione & Wang (1993). 

Tests were also done using a non-staggered finite-difference 
method, but the algorithm yielded numerical artefacts in the 
case of high velocity contrasts at an interface, due to the 
fact that the non-staggered grid is in fact composed of two 
weakly coupled staggered grids (Magnier, Mora & Tarantola 
1994). This approach has therefore been abandoned. Staggered 
finite-difference algorithms are not well suited to the curved 
formulations of the wave equation (tensorial or chain rule), 
due to the fact that numerous interpolations are needed at 
each time step, thus reducing the accuracy of the scheme and 
adding significantly to the computational cost. Interpolations 
are required on a staggered grid in the tensorial formulation 
in order to compute a covariant derivative, which requires the 
sum, at a given grid point, of a partial derivative of the field 
and Christoffel symbols multiplied by the field itself. Note that 
the chain rule approach on a staggered grid also requires inter- 
polations to compute the Cartesian derivatives, as derivatives 
computed along different axes have to be summed at the same 
grid point. 
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In the case of a force acting at a point, the source term @ of 
the wave equation (5) can be written 

@(x, t )  = 6(x - x,) f ( t  - Z)Z, (21) 
where 6(x - x,) is the Dirac distribution centred on the source 
point x,, f ( t )  is a causal function describing the temporal 
dependence of the source, z is the onset time of the source and 
n' is a unit vector specifying the direction of the source force. 
The source term is converted from Cartesian to generalized 
coordinates using 

The time extrapolation scheme is initiated with null conditions 
u(x, to) = 0 and o(x, to) = 0, with to = 0 denoting the beginning 
of the simulation. The stability of the scheme is assured by a 
classical Courant condition: 

where Ax is the distance between grid points in the physical 
domain, up is the P velocity inside the medium and E is the 
Courant number. 

The scheme is free of numerical dispersion up to the Nyquist 
frequency. This condition is met by choosing a maximum grid 
spacing such that the minimum number of grid points per 
wavelength obeys the relation 

where Ax is the distance between grid points in the physical 
domain, us is the S wave velocity inside the medium, f,,, is 
the maximum frequency of the source, and nyheme>2 is the 
minimum number of grid points per wavelength that can be 
accurately modelled by the numerical scheme ( - 4 for a 
Chebyshev operator). 

The boundary conditions are open radiation conditions 
(absorbing boundaries) at each border of the model except the 
free surface. These conditions and the free-surface condition 
are applied in the Chebyshev algorithm by decomposing the 
wavefield into one-way modes (characteristics) perpendicular 
to the boundaries, and modifying these modes according to 
the boundary conditions, as described in detail in Carcione & 
Wang (1993). 

NUMERICAL TESTS IN 2-D 

Numerical tests were conducted in 2-D using two different 
models: the first model to validate the tensorial approach by 
comparing the results obtained to an analytical solution, and 
second to demonstrate its ability to model a free surface with 
topography. 

Validation of the tensorial formulation 

In order to validate the tensorial method, we compare the 
results obtained on the tilted Lamb problem to the analytical 
solution. The grid used is shown in Fig. 2, and has a size of 
187 x 187. The slope makes an angle of 10" with the horizontal 

direction. The medium is homogeneous, having a P-wave 
velocity of 3200 m s-' and an S-wave velocity of 1847.5 m s-', 
corresponding to a Poisson's ratio of CJ = 0.25. The density is 
1000 kg m-3. 

The source is a force having a direction normal to the slope. 
It is placed at x, = 665 m just below the free surface, at a depth 
of z, = 8 m. One receiver (R l )  is placed on the free surface at 
xR1 = 1793.3 m. Another receiver (R2) is placed in the model 
at xR2 = 1028.9 m at a depth of zRz = 832.5 m. Thus, the first 
receiver will record mainly a very strong Rayleigh wave, while 
the second will record the direct P and direct S waves that 
propagate in the curved grid. This will allow the tensorial 
formulation to be validated for the three kinds of waves that 
propagate in the solid. 

Computation proceeded for 2500 time steps with a time 
step of At = 0.35 ms, leading to a total recording time of 
0.875 s. The length of the sides of curvilinear grid cells in the 
physical domain ranged from  AX^^ = 1.4 m to Axmx = 16.3 m 
along the 'horizontal' grid lines and from Azmin = 0.9 m to 
Az,,, = 14.1 m along the 'vertical' grid lines. The angle between 
the horizontal and vertical lines of the grid ranged from 
emin = 80.8" to emax = 90.0'. 

The source function was the second derivative of a Gaussian 
in time, with a central frequency fo = 20.0 Hz and a maximum 
frequency of fmax = 50.0 Hz (defined as the frequency where 
the amplitude spectrum is 5 per cent of the maximum value). 
The minimum number of grid points per fundamental wave- 
length (corresponding to the biggest grid cells) was 9.7 for the 
P wave and 5.6 for the S wave. 

Snapshots of the velocity vector are presented in Fig.3, 
showing the direct P wave, the direct S wave and a strong 
Rayleigh wave that propagates along the slope. The seismo- 
grams recorded at the two receivers are shown in Fig.4. A 
very good agreement is found between the analytical solution 
and the numerical results, both for the strong Rayleigh wave 
(at receiver R1) and for the body waves (at receiver R2), thus 
validating the tensorial approach for the elastic wave equation. 

Simulation with a free-surface topography 

To test the capability of the tensorial approach to model a 
free-surface topography, we conducted two simulations in the 
model shown in Fig. 5. The grid has 187 x 187 points. A two- 
layer model was used, the interface having a curved shape. In 
the upper layer, the density was set to 1000 kg m-3, the P-wave 
velocity to 2800 m s-', and the S-wave velocity to 1820 m s-', 
corresponding to a Poisson's ratio of CJ = 0.13. In the lower 
layer, the density was set to 1500 kg m-3, the P-wave velocity 
to 3800 m s-', and the S-wave velocity to 2000 m s-', corre- 
sponding to a Poisson's ratio of CJ = 0.30. Thus, this two-layer 
model presents a strong contrast both in velocity and in 
Poisson's ratio, allowing us to validate the method for realistic 
geological models. The parameters of the source remain the 
same as in the tilted Lamb problem. 

The length of the sides of the curvilinear grid cells in the 
physical domain ranges from  ax^,, = 1.4 m to Axmax = 18.6 m 
along the 'horizontal' grid lines and from Azmin = 2.0 m to 
Azmax = 15.6 m along the 'vertical' grid lines. The angle between 
the horizontal and vertical lines of the grid ranges from 
emin = 51.7" to B,,, = 126.5'. 

As the grid is curvilinear, a straight line in the physical 
domain (e.g. a line of receivers) does not correspond to a 
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Source + 1 
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Figure 2. The grid used to validate the tensorial approach with respect to the analytical solution of the tilted Lamb problem. The slope makes 
an angle of 10" with the horizontal direction. The grid size is 187 x 187. Every fourth grid line is plotted. 

4 RZ 

t = 0.175 s I I 

t = 0.385 s 

R 2  

t = 0.280 s 

Figure 3. Snapshots of the velocity vector obtained for the tilted Lamb problem with a slope of 10" (see Fig. 2). The cross marks the source 
position, the diamonds represent the two receivers. The source is a force normal to the slope, placed just below the free surface. One can observe 
the direct P wave, the direct S wave and the strong Rayleigh wave that propagates along the slope. 
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Figure 4. Seismograms of the horizontal component of velocity u, (left) and the vertical component of velocity u, (right) for the tilted Lamb 
problem of Fig. 3. The analytical solution is plotted as a solid line, and the numerical solution obtained with the tensorial formulation as a dashed 
line. The upper seismograms correspond to the receiver located just below the free surface (Rl ) ,  and the lower ones to the receiver located at 
depth (R2). The agreement is almost perfect, the maximum difference being less than 1 per cent. 

Source + t Receivers + 

0 

500 

1000 

1500 

2000 

0 500 1000 1500 2000 2500 

Figure 5. The structure used to test the ability of the tensorial approach to model free-surface topography. The grid size is 187 x 187. Every fourth 
grid line is plotted. 

straight line in the ( 5 ,  q)  domain. Consequently, receivers are 
generally not located at grid points and it is necessary to 
interpolate the velocity field that is to be recorded on the 
seismograms. This is achieved using a bilinear interpolation of 
the field from its known values at the corners of the appropriate 
grid cell. two tests. 

As before, the computation proceeded for 2500 time steps 
with a time step of At = 0.35 ms, leading to a total recording 
time of 0.875 s. The minimum number of grid points per 
fundamental wavelength (corresponding to the biggest grid 
cells) was 7.5 for the P wave and 4.9 for the S wave for these 
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Redected and converted waves in the presence of a surface 
topography 

A vertical force source was located at x, = 1425 m and a depth 
of z, = 776.2 m from the free surface. 50 equally spaced receivers 
were placed along a horizontal line between x, = 825 m and 
x, = 2025 m at a depth of z, = 200 m. 

Snapshots are presented in Fig. 6 and seismograms in Fig. 7. 
The shape of P and S waves reflected by the bumpy free 
surface is complex and triplications occur (see the reflection 
from the rightmost hill). Mode conversions of waves reflected 
at the free surface (P to S and S to P) as well as at the interface 
between the two layers are also clearly visible. 

These results illustrate that the tensorial approach is capable 
of modelling reflection and conversion of P and S waves at a 
free surface having a topography, even for a geological model 
containing strong contrasts of velocity and Poisson’s ratio. 

t = 0.210 s 

t = 0.420 s 

The Rayleigh wave 

The vertical force source is now located at x, = 660.9 m just 
below the free surface (at a depth of 10 m). The corresponding 
snapshots are presented in Fig. 8 and the seismograms in 
Fig. 9. The direct P and direct S waves are visible in the 
snapshots as well as a strong Rayleigh wave that propagates 
along the free surface with a speed slightly slower than that of 
the S wave. 

One can observe an event that is interpreted to be a mode 
conversion from a Rayleigh wave to a body wave in a region 
where the free-surface topography changes abruptly on the 
leftmost bump (see snapshots at t = 0.280 s and t = 0.350 s). 
The energy converted from the Rayleigh to a body wave appears 
as a localized body-wave event that trails just after the direct 
S wave. This event appears to ‘peel off’ as the Rayleigh wave 
follows the concave portion of the bump. This event can also 

1111111111~!11111 

.. , 

t = 0.280 s 

Figure 6. Snapshots of the velocity vector obtained for a model with a non-flat free-surface topography (see Fig. 5 ) .  The cross marks the source 
position, the row of diamonds represents the line of receivers. The source is a vertical force placed in the model at a depth of z, = 776.2 m. One 
can observe the complex shapes of the waves, for example triplications that occur after reflection on the rightmost hill. Strong reflected waves are 
generated at the interface between the two media. 
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Figure 7. Seismograms of the horizontal component of the velocity u, (left) and of the vertical component u, (right) for the model with free-surface 
topography (Fig. 5). The source is a vertical force in the model at a depth of z, = 776.2 m and the receiver line is located inside the medium. 

be clearly seen on the horizontal component 0, of the velocity 
recorded at the free surface in the seismograms of Fig. 9. The 
existence of such Rayleigh to body wave mode conversions is 
in agreement with the results of Jih, McLaughlin & Der (1988), 
who also observed similar events in their numerical experi- 
ments when Rayleigh waves encountered abrupt changes in 
the free-surface topography. Furthermore, this phenomenon 
has been demonstrated in the theoretical study of Rulf (1969) 
for Rayleigh waves travelling along curved surfaces. 

These results demonstrate that the tensorial formulation 
is capable of modelling Rayleigh waves in the presence of 
free-surface topography. 

CONCLUSIONS 

It is advantageous to have the ability to solve the wave 
equation directly in curved grids whose lines match geological 
interfaces and the free surface. This leads to more precise 
solutions of sharp curved interface models than are possible 
using Cartesian grid methods, 

A tensorial formulation is presented that enables the wave 
equation to be solved directly on a curved grid without the 
need to introduce a Cartesian coordinate system. Such an 
approach is more natural than the widely used chain rule 
method that solves the wave equation written in Cartesian 
coordinates by making use of the chain rule to express the 
spatial derivatives in terms of those computed in the curved 
grid. Furthermore, the tensorial approach can be implemented 
more efficiently than the chain rule method as it requires 
computation of the same number of discrete spatial derivatives 
as the Cartesian case. 

A simple algebraic grid generation procedure yields grids 
whose lines follow the different interfaces and that become 
controllably finer as interfaces are approached. This allows 
the method to be free of the numerical artefacts that would 
result from the staircase discretization of the interfaces in the 
Cartesian case. 

Numerical tests using a Chebyshev algorithm in 2-D are 
used to validate the tensorial approach and to illustrate its 
capability to model curved interfaces as well as free-surface 
topography. For the tilted Lamb problem, an excellent agree- 
ment is found with the analytical solution. For the case of a 
model having surface topography, complex shapes of the 
different waves, such as triplications, are observed. In addition, 
if the source is close enough to the surface, mode conversions 
between Rayleigh and body waves are observed when bumps 
on the free surface are encountered. 

Additional research is required to improve the grid 
generation methodology, to study whether it is possible to 
adapt the approach to the case of non-smooth curved surfaces 
(i.e. models with pinchouts etc.), and to extend the algorithm 
to the 3-D case. 
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topography (Fig. 5). The source is a vertical force located just below the free surface. The receiver line is placed on the free surface. One can 
observe a strong Rayleigh wave that propagates along the surface, as well as mode conversions from a Rayleigh to body wave which appear clearly 
on the horizontal component. The small-amplitude event on the horizontal component at t = 0.8 s is the reflection from the interface. 
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APPENDIX A: BASIC RULES FOR 
TENSORIAL FORMULATION 

Scalars and vectors are particular cases of more general 
quantities, called tensors, which are transformed according to 
a linear and homogeneous transformation when changing 
between two systems of curvilinear coordinates. Changing from 
{xi} to {xfi}, for example, we have the transformation relation 
for a tensor of order p + q (see, for example, Spain 1965) 

where i,, ... , i, are called contravariant indices and j , ,  ... , jq  
are called covariant indices. For instance, the transformation 
law from a Cartesian to a curvilinear frame for a covariant 
tensor of order one such as velocity is 

ax a2 
vg = 0,- + 0,-, a t  a t  

ax aZ 
v,, = v,- + u,- , av av 
and for a symmetric covariant tensor of order two such as 

ee-surface 

stress it is 

ax aZ 
og,, = ox.( gy + o*.( gy + 2Gxz& G ,  

ax ax aZ aZ (ax aZ I ax az). 
a t  av a< av a t  av av a t  "<,, = o*< = CXX - - + ozz- - + oxz - - 

('43) 

To transform from the contravariant to the covariant formu- 
lation, or from the covariant to the contravariant formulation, 
one can write 

. .  A, = gi . .,, g. . A J l . . . J p ,  A i l . . . i ~  = giljl g'd.A. 
J l . .  . j p  ' ... 

1." P i J i  ' p J p  

('44) 

where g,, is the metric tensor in the covariant formulation and 
giJ is the metric tensor in the contravariant formulation. The 
metric tensor is symmetric by definition ( g i j  = g j i ) .  This tensor 
gij can be obtained from the partial derivatives of the (known) 
direct transformations xi = xi( . . . , 5,) (see eq. 20). For 
example, in 2-D, let xg, x,,, z ~ ,  z,, be the partial derivatives 
of the direct transformation between the two systems of 
coordinates. Then we can write 

g,, = x: + z:, g,, = xi + z ; ,  

g,, = g,, = x<x, + ZeZ,,. 

The Jacobian of the transformation is defined by 

( '45)  

J = (X<Z,, - x,,z<)- l. ('46) 

The partial derivatives of the inverse transformation can 
then be obtained, even if the inverse transformation itself 
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ti = &(x, z )  is not known analytically (but exists, meaning that 
the Jacobian never equals zero), by writing 

The expression for the metric tensor in contravariant formulation 
is then 

22 - 2 s " = % I + t t ,  g -i?,+'?:, 

s12 = g2' = t J X  + 5,rz ('48) 

The Christoffel symbols of the second kind that appear in the 
expression for the covariant derivative are not tensors, as they 
do not follow the transformation law given by eq. (Al) ,  but 
are symmetric in the lower indices: 

r..k V = r . k  J 1  . (A91 

APPENDIX B: GRID GENERATION 
PROCESS 

If we consider two points A and B belonging to the curved 
interfaces C, and C,, respectively, that bound a given layer, a 
curve linking A to B can be constructed with given unit tangent 
vectors TA at A and T, at B (see Fig. l), as 

r'(q*) = ~r&*)r', + ~ry(q*)r's + ccA(q*)hoTA + cc:(q*)h,T,, (B1) 
where q* E [0, 11 and cti are the four third-degree Hermite 
polynomials (see Fig. B1) defined as 

a:(rl*) = 1 - 3 p  + 2'?*3, 
= 3v*2 - 2'?*3, 

@.A('?*) = '?* - 2'?*2 + '?*3, 

Crj('?*) = - '?*2 + '?*3, (B2) 
where r' denotes the position vector along the curve. The two 
constants ho and h,  define the length of the tangent vectors 
and will be used in the following to define the size of the grid 
cells close to the boundaries. 

The algebraic mapping method described above-see 
Fletcher (1991 F u s e s  the properties of the third-degree 
Hermite polynomials (see Fig. B1) and their first derivatives 
(see Fig. B2) to ensure that the required conditions are met. 

Figure B1. The four third-degree Hermite polynomials that are used 
to generate a curved grid. 
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Figure B2. The first derivatives of the third-degree Hermite poly- 
nomials that are used to generate a curved grid. 

This is easy to verify by calculating the tangent to this curve, 

T('?*) = - aq'?*) - - Ub0('?*)FA + @('?*)r', 
a'?* 

+ ctb'('?*)hOTA + cq('?*)h'T,, (B3) 
and applying eqs (Bl) and (B3) at points A and B, which 
yields F(0) = FA, F( 1) = r',, T(0)  = hoTA and T(1) = hlTs as 
desired. 

We can extend this method to generate a 2-D grid within a 
layer bounded by curved interfaces. Consider a square grid in 
the (t, r)  domain with 5 E [O ,  1, ... , iVc] and q E [O, 1, ... , NJ. 
The corresponding curved grid is defined by 

r'(& '?I = &'?*)G(t) + 4( '?*)r ' , (S)  
+ @A('?*)hOfA(t) + 4 ( ' ? * ) h T B ( % ) >  (B4) 

where 

(B5) q*=-.  11 
N ,  

In eq.(B4), FA(<) and r',(<) specify the set of departure and 
arrival points of the grid lines on the upper and lower interfaces 
respectively, and T,(t) and f,(() the corresponding tangents 
at these points. This equation constitutes an analytic trans- 

I 1 

Figure B3. Example of a grid generated with the algebraic method. 
The use of Hermite polynomials has lead to a grid that becomes finer 
as the interfaces are approached. Note that the left and right boundaries 
are distorted and not perfectly vertical. 
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formation function from the square computational domain 
( 5 ,  q )  to the physical space r'=(x,z). Hence, it defines the 
coordinate transformation functions x = x(5, q) and z = z(5, q). 

The grid generation approach described above has the useful 
property that the grid can be refined or stretched close to the 
boundaries of a layer by specifying appropriate values of h, 
and h ,  to define the length of the vectors normal to an 
interface. This can be demonstrated by developing (Bl) to the 
first order in q* close to q* = 0 and q* = 1, respectively, yielding 
11AF11 2: hoAq* and 11A7/1 2:hlAq*, where IIAr'll represents the 
change in position in the physical domain for a given change 

Aq* in the computational domain. Hence, the sizes of the grid 
cells close to the lower and upper boundaries are respectively 
hoAq* and hlAq*. 

An example of a grid obtained by this algebraic method for 
a two-layer model with surface topography is shown in Fig. B3. 
The grid becomes finer as the interfaces are approached, except 
at the bottom of the grid which corresponds to the absorbing 
boundary. The grid size is 512 x 512 and the values of the two 
constants are ho = 500 and h, = 500 in the upper layer, and 
ho = 2850 and hl = 500 in the lower layer. 
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