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Abstract

Parallel computing is widely used for large scale three-

dimensional simulation of seismic wave propagation. One

particularity of most of these simulations is to consider

a finite computing domain whereas the physical prob-

lem is unbounded. Additional numerical conditions are

then required to absorb the energy at the artificial bound-

aries, which introduces a different formulation and a load-

imbalance. In the context of finite difference method, we

study the use of thread overloading approach to alleviate

the imbalance. We introduce a mixed-hybrid parallel im-

plementation based on a classical cartesian partitioning at

the MPI level and a self-scheduling algorithm at the thread

level to handle more than 700 threads on 8 processors. We

demonstrate the efficiency of our methodology on an exam-

ple of regional modeling performed on 80 processors.

1. Introduction

One major goal of strong motion seismology is the es-

timation of damage in future earthquake scenarios. Re-

cent advances in high-performance computing technologies

make realistic simulation of seismic wave propagation fea-

sible on a regional scale at relatively high frequencies. Dif-

ferent numerical methods have been successfully developed

to model the propagation of seismic waves, for instance

finite-element methods [1], spectral and pseudo-spectral

method [2], or spectral-elements methods [3]. One of the

most widely-used technique is the finite-difference method

(FDM) because of its simplicity and numerical efficiency

[4]. A review of finite-difference methods for the seismic

wave equation can be found for instance in [5].

Another requirement in the case of unbounded physical do-

main is the definition of a finite computational domain with

artificial conditions to absorb the outgoing energy. Several

approaches are available. We select the Convolutional Per-

fectly Matched Layer (CPML) [6] which is an improvement

of the PML method described for example in [7] for the

elastodynamics equation. A common feature of these for-

mulations is to introduce different computational loads in

the computing domain, especially at the lateral and bottom

edges of the three-dimensional geometry.

Concerning parallel computing, Message Passing Interface

(MPI) has become a successful parallel programming en-

vironment for distributed and shared memory architectures

such as clusters of SMP nodes, mainly due to its simplic-

ity and portability. In this context, mapping of structured

computational grids on a set of processors is generally per-

formed by defining a cartesian grid of processors. In our

case, this simple partitioning leads to poor scalability. Due

to the absorbing boundary formulation, this naive decom-

position leads to subdomains with a different CPU load and

inhibits load balancing. Moreover, a flat MPI model in-

creases the number of MPI processes that are really nec-

essary to exploit modern architectures composed of large

interconnected shared memory nodes and generates an im-

portant number of potentially useless communications.

We therefore introduce a hierarchical partitioning approach



using a hybrid programming model and we rely on the

properties of the thread library to provide an efficient load-

balancing mechanism. We develop a methodology to en-

hance the performance level of the parallel finite-difference

simulation of three-dimensional seismic wave propagation.

An algorithm based on hybrid programming and domain

overloading is used to reduce load imbalance. This ap-

proach is rather general and could be implemented to tackle

parallel finite-difference problem using CPU consuming

boundary conditions.

2. Numerical modeling of seismic wave propa-

gation

The seismic wave equation in the case of an elastic ma-

terial is:

ρ
∂vi

∂t
=

∂σij

∂j
+ Fi (1)

and the constitutive relation in the case of a isotropic

medium is:
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where indices i, j, k represent a component of a vector or

tensor field in cartesian coordinates (x, y, z), vi and σij rep-

resent the velocity and stress field respectively, and Fi de-

notes an external source force. ρ is the material density and

λ and µ are the elastic coefficients known as Lamé parame-

ters.

A time derivative is denoted by ∂
∂t

and a spatial derivative

with respect to the i-th direction is represented by ∂
∂i
. The

Kronecker symbol δij is equal to 1 if i = j and zero other-

wise. At the lateral and bottom sides of the model, we add

a CPML layer to absorb the outgoing energy. A fixed size

of ten grid points is chosen for the thickness of this layer.

A scheme that is fourth-order accurate in space and second-

order in time is used to discretize the equations. We use the

classical staggered-grid represented in Figure 1.

3 Parallel execution model

3.1 Cartesian-grid based decomposition
using MPI

The parallelization strategy we use is based on data par-

allelism in which each processor solves its own subdomain

problem. Each processor updates the wave field within its

portion of grid and exchanges informations with its neigh-

bors on common edges. The algorithm can be described as

follows.

Figure 1. Elementary grid cell of the 3D stag-
gered spatial finite-difference method classi-

caly used to discretize the equations of elas-

todynamics.

• A pre-processing phase, including allocation of mem-

ory necessary at the node level: Each MPI process is

responsible for the initialization of physical variables

corresponding to the relevant subset of computational

domains and for the allocation of extra communication

buffers.

• A time-dependent computational phase corresponding

to the resolution of the first-order system of equations

(1) and (2) : At each time step, the stress variables are

computed first, then each domain exchanges interface

information with its neighbors and then the velocity

variables are updated with again an exchange phase to

update common edges. The free surface or absorbing

boundary conditions are implemented at this stage.

The processors at the top of the grid apply a free-surface

boundary condition while the boundary subdomains in con-

tact with the other edge apply absorbing conditions. Be-

cause of the high-order finite-difference stencil used to com-

pute the spatial derivatives, an exchange of field values at

grid points located on the edges is necessary between sub-

domains. The fourth-order operator we implement involves

exchanging information from two grid points. Figure 2 rep-

resents the computational domain using different colours

for the three regions. The implementation of the free sur-

face condition is not an intensive computing phase, contrary

to the physical domain and the bottom CPML layer. To take

advantage of the natural horizontal symmetry in the geom-

etry of the domain, a two-dimensional static decomposition

is used to avoid additional imbalance in the computation

owing to vertical partitioning.
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Figure 2. Lateral view of the three-
dimensional computational domain with

three different regions in terms of numerical

formulation.

3.2 Limitations due to static and quasi-
static partitioning

To illustrate the load imbalance in the context of static

grid-based partitioning, we select three different discretiza-

tions based on grids having a different size (i.e, increas-

ingly higher resolution).We consider 3D regional geologi-

cal models, part of the French Riviera. The smallest grid is

composed of 27 million grid points (330 x 330 x 255), the

intermediate-sized grid contains 81 million grid points (500

x 500 x 325) and the largest model contains 780 million grid

points (1000 x 1200 x 650). The CPU-cost ratio observed

between a boundary grid point and a physical domain point

varies from two to four. We therefore choose a ratio of three

as an arbitrary average value for our theoretical representa-

tion in Figure 3.

One common remark is the increase of load imbalance with

the number of processors. The largest test case exhibits an

imbalance close to 50% onO(1000) processors. Evenmod-

erate scale models could be inefficient with an average of

40% of imbalance for medium-sized model on 80 proces-

sors.

One classical way of ensuring load balancing in the con-

text of grid-based computation is the use of mesh parti-

tioning techniques [8] for initial distribution or dynamic

re-distribution during the computation. Several redistri-

bution toolkits have been successfully developed for MPI

simulations, for example in the case of finite-element cal-

culations and adaptive mesh refinement [9]. However,

concerning finite-difference modeling, the use of such ap-

proaches changes the shape of the regular interface be-

tween distributed subdomains (north-south-east-west for

two-dimensional decomposition) and therefore leads to far

more complex message-passing schemes.

Considering two-dimensional partitioning in the horizontal

directions of a 3D domain, one could suggest a quasi-static

load-balancing algorithm based on zone costs. The idea

would be to determine, from the numerical formulation or

from runtime measurements, the suitable weights to shift

forward or backward the boundaries of each MPI subdo-

main and minimize imbalance. This methodology has been

applied in [10] with a moderate number of processors in the

case of electromagnetic problems to address the PML over-

head. Although this method appears attractive, a couple of

limitations should be underlined. First of all, considering

only the flops ratio provides incomplete hints, for example

the number of components which need to be absorbed can

vary from one to three in the boundary conditions formula-

tion depending on the location of the point on the edge. This

numerical consideration makes the imbalance quite irregu-

lar in the whole computational domain. On top of that, it is

very difficult to evaluate a priori the execution time of vari-

ous parts of a program accurately because of cache effects,

arithmetic considerations or compiler behavior that can lead

to unpredictable situations for such a fine grain computa-

tion.

Finally, shifting forward or backward the boundaries pre-

vents from using a large number of processors. In fact, the

minimum size authorized for any subdomain, in terms of

grid point number per direction, is reached faster. The con-

sequence is a very fine grain of computation and reduced

opportunities for overlapping.
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Figure 3. Theoretical load imbalance for a

finite-difference parallel simulation and im-
pact of CPU-costly boundary conditions. We

have considered three different grid sizes.
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3.3 Mixed-hybrid parallel approaches

Several references (e.g. [11], [12]) report implemen-

tations of a hybrid programming strategy for large-scale

numerical simulations. One of the main objectives is to

save memory consumption or communication volume at the

shared-memory level, but also to introduce load balancing

for complex parallel simulations. On the other hand, hybrid

programming is considered as rather difficult to control in

terms of performance prediction.

If we consider mixed MPI and OpenMP programming, the

performance could be lowered by the implementation strat-

egy of these standards [13]. Several aspects can be under-

lined such as the lack of support for distributed allocation of

shared data or the difficulties to control the threads created

by the OpenMP environment, especially in the context of

non uniform memory architectures (NUMA).

MPI combined with POSIX threads programming is an-

other way of handling a second level of parallelism. Unfor-

tunately, kernel threads are typically preemptive with regu-

lar flush of cache memory. The use of a thread overload-

ing strategy could be very inefficient, especially for cache-

friendly algorithm.

One could also consider parallel programming environ-

ments described in [14] that provide dynamic load balanc-

ing for MPI applications and thread migration. Adaptive-

MPI (AMPI) allows the straightforward conversion from

legacy MPI applications to the AMPI environment, which

is an important feature for programmers. The idea is to sub-

divide the problem into several smaller partitions with dy-

namic mapping over the set of physical processors. This is

done using runtime measurements of computational loads

and communication patterns. AMPI converts MPI pro-

cesses into user-level threads with few possibilities of sav-

ing extra communication buffers on a shared-memory node.

The decomposition also generates a number of communi-

cations between subdomains which represents a potential

overhead.

4 Dynamic approach based on self-

scheduling and thread overloading

4.1 Thread library

We choose the PM2 software and the Marcel POSIX-

compliant thread library [15] to benefit from performance

of thread management and several possibilities of schedul-

ing policies. Marcel is a two-level thread library: it

binds one kernel-level thread on each processor and then

performs fast user-level context switches between user-

level threads, hence getting complete control over thread

scheduling in user space without any further help from the

kernel. These features are important for the efficiency of

Figure 4. Top view - Hybrid partitioning of
our 3D computational domain. Each MPI

macro-domain creates a hierarchy of micro-

domains.

our algorithm. We choose to use simple self-scheduling

with non-preemptive thread execution. Using a single list

of ready threads from which the scheduler simply picks up

the next thread to be scheduled, the workload is automat-

ically balanced between processors at the shared-memory

level.

4.2 Dynamic load-balancing algorithm

4.2.1 Hierarchical partitioning

A second level of parallelism is introduced by dividing each

MPI domain into a grid of micro-domains. This new level

of parallelism is designed to balance the computations in-

side a multiprocessor node and makes the global behavior

of the code rely on macro-domain decomposition. This ap-

proach seems natural with the increasing power available

inside current single shared-memory nodes. Multi-core or

NUMA are the basic technologies on which large comput-

ing nodes, with a increasing number of computing units ac-

cessing the same memory space, are based. The idea is to

benefit from this new flexibility and to define a moderate

number of macro-domains in order to have a limited load

imbalance.

Figure 4 illustrates the hierarchical partitioning used with

MPI macro-domains and thread-level micro-domains. For

example, geometrical considerations prevent an optimized

static decomposition at the corner of the domain. Using vir-

tualization at the node level, we define more threads than

computing resources and use a global runqueue to ensure

load balancing. Each macro-domain is divided indepen-

dently by applying a first level of decomposition to get a

4
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Figure 5. Two-level parallelism with four MPI
processes. Each MPI task creates a pool of

threads for the update of velocity and stress
unknowns.

number of micro-domains greater than the number of virtual

processors. Another level of decomposition is then applied

to the lightest micro-domains. This hierarchy is finally used

at the scheduling level. The definition of micro-domains

could be inefficient without careful thread scheduling and

meaningful information coming from the application. Dur-

ing the pre-processing phase, a weight is affected to each

micro-domain, which allows the ranking of threads in dif-

ferent classes depending on their load and their level in the

hierarchy. The fine grain of this parallelism level and the

self-scheduling algorithm lead to natural load balancing, as-

suming for example scheduling of heavy threads in first po-

sition and the use of light threads as an adjustment strategy.

4.2.2 Thread management

The main differences with the classical 2D algorithm oc-

cur during the computational phase. At each time step, we

create a huge number of threads for the parallel updates

of the stress and velocity unknowns. These threads share

data at the MPI process level as illustrated in Figure 5 for

four MPI processes on four computing nodes. Each node is

composed of a defined number of CPUs and a single MPI

process is responsible for micro-domain intra-node creation

and macro-domain inter-node communications. Typically

we can multiply the number of physical processors by 100

to define the number of threads in the pool of threads with-

out significant overhead in terms of thread context switch-

ing. These threads are destroyed before the communication

phase. This strategy aims to maximum portability for the

software.

Keeping only the main thread alive inside the MPI process

during a communication phase makes the code independent

of the thread-safe aspect of the MPI implementation. Nev-

ertheless, other optimized approaches could be explored

by considering together communication and computation

threads and take them into account at the scheduler level

to enhance overlap possibilities. Another direction could

be to make these pools of threads blocked on a condition

variable.

4.2.3 Computational efficiency

We can also notice that this hybrid approachmaintains large

MPI macro-domains and facilitates the overlapping of com-

munications by computations. This strategy is widely used

and very efficient for static grid-based decomposition and

allows the use of persistent MPI communications with over-

lapping. Using a 2D decomposition makes the computa-

tion/communication ratio of the order of V
√

P
where V is

the volume of the subdomain and P the number of com-

puting units. The hybrid computation approach increases

the size of the MPI domain and decreases the number of

MPI processes, making the previous ratio better in terms of

overlapping. Different directions of partitioning could be

selected at the thread level because they are independent of

the macro-domain decomposition. However, cache behav-

ior needs to be taken into account. Most arrays allocated in

the code are 3D arrays. In order to avoid the generation of

extra cache misses by cutting the local z direction, it is im-

portant in a C programming to keep that direction local with

respect to the unit stride. This strategy is consistent with re-

marks in a previous section on the vertical direction. It is

also a good way for maximizing the prefetching. We com-

plete our hierarchical algorithm with local blocking as de-

scribed in [16] in order to maximize performance and take

full advantages of the size of the micro-domains. The gain

obtained can be important for certain classes of stencils but

the huge number of variables per grid point prevents us from

getting very good performance in the context of the elasto-

dynamics equation. Typically we did not gain more than 3

or 4% in practice with this blocking strategy.

5 Results and analysis

5.1 Description of the experimental plat-
form

Our experimental platform is a cluster of ten IBM x3755

nodes. Each node is a quadri dual-core 2.6 Ghz AMD

5
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Figure 6. Load balancing comparison be-

tween a pure MPI approach and a mixed ap-

proach: the hybrid methodology is clearly su-
perior.

Opteron processor with 32 GB of memory and 2 Mb of L2

cache for each processor. The nodes are interconnectedwith

a Myrinet network. We use 80 cores to simulate a total of

6000 time steps.

5.2 Numerical experiments

We consider the intermediate-sized model described in

section 3.2. The first concern is the behavior of the im-

balance with our multithreaded programmingmethodology.

Figure 6 shows the maximum imbalance between MPI sub-

domains and its evolution with the number of cores. As

reported in the theoretical model of Figure 3, the imbalance

increases significantly with the number of cores, reaching

a maximum of 36% in the case of pure MPI partitioning.

The experiments are close to this result but it is interesting

to underline the difference between theory and experiments

in the case of 8 cores for example: the experimental result

(2.98%) is very far from the theoretical imbalance (7.05%).

This is a good illustration of the difficulty to obtain real-

istic and useful static information to balance the computa-

tions. Inside each MPI process, we use 772 micro-domains

and the same number of threads on 8 cores with no signifi-

cant overhead in terms of management and scheduling. This

demonstrates the efficiency of the Marcel thread library and

makes intensive multithreading a powerful tool for comput-

ing purpose. For our implementation, the non-preemptive

behavior of Marcel threads is also an advantage to obtain

potential cache effects.

Figure 6 illustrates the interest of the hybrid approach over

pure MPI partitioning, the imbalance is drastically reduced

even for a moderate scale configuration. Using 80 cores we

decrease the imbalance from 36% to 8%.
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Figure 7. Gain in terms of elapsed time for

the French Riviera example on 80 CPUs.

The comparison with the pure MPI approach
shows a maximum 25 % reduction of compu-

tation time.

Figure 7 represents the elapsed time gain based on hybrid

approach over MPI decomposition. This demonstrates the

relation between load imbalance and parallel performance

of the code. Each time one can decrease the imbalance, the

MPI waiting idle time is also reduced and the global perfor-

mance of the code is significantly enhanced. As the differ-

ence between MPI and hybrid decomposition increases, the

elapsed time gain also increases: for example reducing the

imbalance from 36% to 8% leads to a gain of 25% on the

simulation time.

One of the main aspects of the hybrid methodology is to

rely on the macro-domain imbalance behavior. The first

requirement is to get nearly perfect micro-domain balance

at the shared-memory node level. In our experiments, the

maximum imbalance between virtual processors is 2% with

772 threads. That means that our strategy is well suited for

geometry with different CPU-cost regions like the macro-

domains at the corners of the three-dimensional domain.

This class of macro-domains does not exhibit any horizon-

tal symmetry and it is therefore difficult to balance com-

putation using a grid-based decomposition. As the number

of micro-domains increases, results improve until reaching

the arithmetic limits of the decomposition of a subdomain

by an increasing number of threads or the potential bottle-

neck coming from thread management overhead. Figure 8

shows a comparison of imbalance evolution with respect

to the number of MPI processes. As explained in the al-

gorithm description, the hybrid partitioning closely mim-

ics the behavior of MPI partitioning at the macro-domain

level and relies on the quality of this decomposition. Be-

cause we use a moderate number of macro-domains this

imbalance remains very low. In case of a larger number of

6



 0

 5

 10

 15

 20

108421

L
o

a
d

 i
m

b
a

la
n

c
e

 (
%

)

Number of MPI tasks

Flat MPI partitioning

 0

 5

 10

 15

 20

108421

L
o

a
d

 i
m

b
a

la
n

c
e

 (
%

)

Number of MPI tasks

Flat MPI partitioning
Hierarchical partitioning

Figure 8. Comparison of pure MPI and hy-

brid partitioning behaviour in terms of load-

balancing at the macro-domain level.

macro-domains, shifting forward or backward the computa-

tional domain boundaries could become attractive because

it would lower the importance of having good static infor-

mation.

6 Conclusions and future work

We have considered the load balancing problem in the

context of 3D finite-difference modeling of seismic wave

propagation. We have demonstrated the efficiency of a hier-

archical partitioning coupled with a mixed-hybrid parallel

programming approach and the use of a relevant thread

model. Using a dedicated cost model to identify the load

imbalance based on the numerical formulation used to solve

the elastic wave equation, we have pointed out the poor

performance of classical flat MPI partitioning for this class

of problems. A two-level partitioning algorithm has been

introduced, with MPI processes used at the higher level.

These sets of macro-domains drive the global load-balance

of the code and allow good communication/computation

overlapping. At the lower level, we defined micro-domains

using an overloading strategy. Using more threads than

computing units is not only a way of benefiting from

potential cache effects but is also useful to address the

load-balancing problem at the node level. For a 3D test

problem, we have obtained a gain of 25% in terms of

elapsed time.

In future work, the hierarchical partitioning described here

could be a good candidate to express memory affinity

between macro-domains and/or micro-domains. Getting

the maximum performance from hierarchical architectures

by minimizing non local memory access is a difficult

research subject and requires careful scheduling of threads

with respect to affinity. In [17], the idea of controlling

scheduling with bubbles has been introduced; it could be

applied to our algorithm, considering the natural hierarchy

between sub-domains in our partitioning. This NUMA-

aware algorithm could be completed by hierarchical work

stealing.

Another idea could be to use the thread-overloading

methodology to implement a cache-efficient algorithm.

Recent advances in the implementation of stencil com-

putations [18] have demonstrated important speedup

coming from a suitable organization and partitioning of the

space-time domain. The first-order system of equations we

use to model seismic wave propagation is well adapted to

this particular implementation of grid-based computations.
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